## Models We currently offer four text-to-image models. `FLUX1.1 [pro]` is our most capable model which can generate images at up to 4MP while maintaining an impressive generation time of only 10 seconds per sample. | Name | HuggingFace repo | License | sha256sum | | ------------------------- | ------------------------------------------------------- | --------------------------------------------------------------------- | ---------------------------------------------------------------- | | `FLUX.1 [schnell]` | https://huggingface.co/black-forest-labs/FLUX.1-schnell | [apache-2.0](model_licenses/LICENSE-FLUX1-schnell) | 9403429e0052277ac2a87ad800adece5481eecefd9ed334e1f348723621d2a0a | | `FLUX.1 [dev]` | https://huggingface.co/black-forest-labs/FLUX.1-dev | [FLUX.1-dev Non-Commercial License](model_licenses/LICENSE-FLUX1-dev) | 4610115bb0c89560703c892c59ac2742fa821e60ef5871b33493ba544683abd7 | | `FLUX.1 [pro]` | [Available in our API](https://docs.bfl.ml/). | | `FLUX1.1 [pro]` | [Available in our API](https://docs.bfl.ml/). | | `FLUX1.1 [pro] Ultra/raw` | [Available in our API](https://docs.bfl.ml/). | ## Open-weights usage The weights will be downloaded automatically from HuggingFace once you start one of the demos. To download `FLUX.1 [dev]`, you will need to be logged in, see [here](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-login). If you have downloaded the model weights manually, you can specify the downloaded paths via environment-variables: ```bash export FLUX_SCHNELL= export FLUX_DEV= export AE= ``` For interactive sampling run ```bash python -m flux --name --loop ``` Or to generate a single sample run ```bash python -m flux --name \ --height --width \ --prompt "" ``` We also provide a streamlit demo that does both text-to-image and image-to-image. The demo can be run via ```bash streamlit run demo_st.py ``` We also offer a Gradio-based demo for an interactive experience. To run the Gradio demo: ```bash python demo_gr.py --name flux-schnell --device cuda ``` Options: - `--name`: Choose the model to use (options: "flux-schnell", "flux-dev") - `--device`: Specify the device to use (default: "cuda" if available, otherwise "cpu") - `--offload`: Offload model to CPU when not in use - `--share`: Create a public link to your demo To run the demo with the dev model and create a public link: ```bash python demo_gr.py --name flux-dev --share ``` ## Diffusers integration `FLUX.1 [schnell]` and `FLUX.1 [dev]` are integrated with the [🧨 diffusers](https://github.com/huggingface/diffusers) library. To use it with diffusers, install it: ```shell pip install git+https://github.com/huggingface/diffusers.git ``` Then you can use `FluxPipeline` to run the model ```python import torch from diffusers import FluxPipeline model_id = "black-forest-labs/FLUX.1-schnell" #you can also use `black-forest-labs/FLUX.1-dev` pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power prompt = "A cat holding a sign that says hello world" seed = 42 image = pipe( prompt, output_type="pil", num_inference_steps=4, #use a larger number if you are using [dev] generator=torch.Generator("cpu").manual_seed(seed) ).images[0] image.save("flux-schnell.png") ``` To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation