## Models FLUX.1 Fill introduces advanced inpainting and outpainting capabilities. It allows for seamless edits that integrate naturally with existing images. | Name | HuggingFace repo | License | sha256sum | | ------------------- | -------------------------------------------------------- | --------------------------------------------------------------------- | ---------------------------------------------------------------- | | `FLUX.1 Fill [dev]` | https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev | [FLUX.1-dev Non-Commercial License](model_licenses/LICENSE-FLUX1-dev) | 03e289f530df51d014f48e675a9ffa2141bc003259bf5f25d75b957e920a41ca | | `FLUX.1 Fill [pro]` | Only available in our API. | ## Examples ![inpainting](../assets/docs/inpainting.png) ![outpainting](../assets/docs/outpainting.png) ## Open-weights usage The weights will be downloaded automatically from HuggingFace once you start one of the demos. To download `FLUX.1 Fill [dev]`, you will need to be logged in, see [here](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-login). Alternatively, if you have downloaded the model weights manually from [here](https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev), you can specify the downloaded paths via environment variables: ```bash export FLUX_DEV_FILL= export AE= ``` For interactive sampling run ```bash python -m src.flux.cli_fill --loop ``` Or to generate a single sample run ```bash python -m src.flux.cli_fill \ --img_cond_path \ --img_cond_mask ``` The input_mask should be an image of the same size as the conditioning image that only contains black and white pixels; see [an example mask](../assets/cup_mask.png) for [this image](../assets/cup.png). We also provide an interactive streamlit demo. The demo can be run via ```bash streamlit run demo_st_fill.py ```