File size: 30,362 Bytes
f7ab812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
import asyncio
# import html
# import os
from dataclasses import dataclass
from typing import Union
import numpy as np
import array
from ..utils import logger
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
)
import oracledb
class OracleDB:
def __init__(self, config, **kwargs):
self.host = config.get("host", None)
self.port = config.get("port", None)
self.user = config.get("user", None)
self.password = config.get("password", None)
self.dsn = config.get("dsn", None)
self.config_dir = config.get("config_dir", None)
self.wallet_location = config.get("wallet_location", None)
self.wallet_password = config.get("wallet_password", None)
self.workspace = config.get("workspace", None)
self.max = 12
self.increment = 1
logger.info(f"Using the label {self.workspace} for Oracle Graph as identifier")
if self.user is None or self.password is None:
raise ValueError("Missing database user or password in addon_params")
try:
oracledb.defaults.fetch_lobs = False
self.pool = oracledb.create_pool_async(
user=self.user,
password=self.password,
dsn=self.dsn,
config_dir=self.config_dir,
wallet_location=self.wallet_location,
wallet_password=self.wallet_password,
min=1,
max=self.max,
increment=self.increment,
)
logger.info(f"Connected to Oracle database at {self.dsn}")
except Exception as e:
logger.error(f"Failed to connect to Oracle database at {self.dsn}")
logger.error(f"Oracle database error: {e}")
raise
def numpy_converter_in(self, value):
"""Convert numpy array to array.array"""
if value.dtype == np.float64:
dtype = "d"
elif value.dtype == np.float32:
dtype = "f"
else:
dtype = "b"
return array.array(dtype, value)
def input_type_handler(self, cursor, value, arraysize):
"""Set the type handler for the input data"""
if isinstance(value, np.ndarray):
return cursor.var(
oracledb.DB_TYPE_VECTOR,
arraysize=arraysize,
inconverter=self.numpy_converter_in,
)
def numpy_converter_out(self, value):
"""Convert array.array to numpy array"""
if value.typecode == "b":
dtype = np.int8
elif value.typecode == "f":
dtype = np.float32
else:
dtype = np.float64
return np.array(value, copy=False, dtype=dtype)
def output_type_handler(self, cursor, metadata):
"""Set the type handler for the output data"""
if metadata.type_code is oracledb.DB_TYPE_VECTOR:
return cursor.var(
metadata.type_code,
arraysize=cursor.arraysize,
outconverter=self.numpy_converter_out,
)
async def check_tables(self):
for k, v in TABLES.items():
try:
if k.lower() == "lightrag_graph":
await self.query(
"SELECT id FROM GRAPH_TABLE (lightrag_graph MATCH (a) COLUMNS (a.id)) fetch first row only"
)
else:
await self.query("SELECT 1 FROM {k}".format(k=k))
except Exception as e:
logger.error(f"Failed to check table {k} in Oracle database")
logger.error(f"Oracle database error: {e}")
try:
# print(v["ddl"])
await self.execute(v["ddl"])
logger.info(f"Created table {k} in Oracle database")
except Exception as e:
logger.error(f"Failed to create table {k} in Oracle database")
logger.error(f"Oracle database error: {e}")
logger.info("Finished check all tables in Oracle database")
async def query(
self, sql: str, params: dict = None, multirows: bool = False
) -> Union[dict, None]:
async with self.pool.acquire() as connection:
connection.inputtypehandler = self.input_type_handler
connection.outputtypehandler = self.output_type_handler
with connection.cursor() as cursor:
try:
await cursor.execute(sql, params)
except Exception as e:
logger.error(f"Oracle database error: {e}")
print(sql)
print(params)
raise
columns = [column[0].lower() for column in cursor.description]
if multirows:
rows = await cursor.fetchall()
if rows:
data = [dict(zip(columns, row)) for row in rows]
else:
data = []
else:
row = await cursor.fetchone()
if row:
data = dict(zip(columns, row))
else:
data = None
return data
async def execute(self, sql: str, data: list | dict = None):
# logger.info("go into OracleDB execute method")
try:
async with self.pool.acquire() as connection:
connection.inputtypehandler = self.input_type_handler
connection.outputtypehandler = self.output_type_handler
with connection.cursor() as cursor:
if data is None:
await cursor.execute(sql)
else:
# print(data)
# print(sql)
await cursor.execute(sql, data)
await connection.commit()
except Exception as e:
logger.error(f"Oracle database error: {e}")
print(sql)
print(data)
raise
@dataclass
class OracleKVStorage(BaseKVStorage):
# should pass db object to self.db
def __post_init__(self):
self._data = {}
self._max_batch_size = self.global_config["embedding_batch_num"]
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> Union[dict, None]:
"""根据 id 获取 doc_full 数据."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
# print("get_by_id:"+SQL)
res = await self.db.query(SQL, params)
if res:
data = res # {"data":res}
# print (data)
return data
else:
return None
# Query by id
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
"""根据 id 获取 doc_chunks 数据"""
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)
params = {"workspace": self.db.workspace}
# print("get_by_ids:"+SQL)
# print(params)
res = await self.db.query(SQL, params, multirows=True)
if res:
data = res # [{"data":i} for i in res]
# print(data)
return data
else:
return None
async def filter_keys(self, keys: list[str]) -> set[str]:
"""过滤掉重复内容"""
SQL = SQL_TEMPLATES["filter_keys"].format(
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
)
params = {"workspace": self.db.workspace}
try:
await self.db.query(SQL, params)
except Exception as e:
logger.error(f"Oracle database error: {e}")
print(SQL)
print(params)
res = await self.db.query(SQL, params, multirows=True)
data = None
if res:
exist_keys = [key["id"] for key in res]
data = set([s for s in keys if s not in exist_keys])
else:
exist_keys = []
data = set([s for s in keys if s not in exist_keys])
return data
################ INSERT METHODS ################
async def upsert(self, data: dict[str, dict]):
left_data = {k: v for k, v in data.items() if k not in self._data}
self._data.update(left_data)
# print(self._data)
# values = []
if self.namespace == "text_chunks":
list_data = [
{
"__id__": k,
**{k1: v1 for k1, v1 in v.items()},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
# print(list_data)
for item in list_data:
merge_sql = SQL_TEMPLATES["merge_chunk"]
data = {
"check_id": item["__id__"],
"id": item["__id__"],
"content": item["content"],
"workspace": self.db.workspace,
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content_vector": item["__vector__"],
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
if self.namespace == "full_docs":
for k, v in self._data.items():
# values.clear()
merge_sql = SQL_TEMPLATES["merge_doc_full"]
data = {
"check_id": k,
"id": k,
"content": v["content"],
"workspace": self.db.workspace,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
return left_data
async def index_done_callback(self):
if self.namespace in ["full_docs", "text_chunks"]:
logger.info("full doc and chunk data had been saved into oracle db!")
@dataclass
class OracleVectorDBStorage(BaseVectorStorage):
cosine_better_than_threshold: float = 0.2
def __post_init__(self):
pass
async def upsert(self, data: dict[str, dict]):
"""向向量数据库中插入数据"""
pass
async def index_done_callback(self):
pass
#################### query method ###############
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]:
"""从向量数据库中查询数据"""
embeddings = await self.embedding_func([query])
embedding = embeddings[0]
# 转换精度
dtype = str(embedding.dtype).upper()
dimension = embedding.shape[0]
embedding_string = "[" + ", ".join(map(str, embedding.tolist())) + "]"
SQL = SQL_TEMPLATES[self.namespace].format(dimension=dimension, dtype=dtype)
params = {
"embedding_string": embedding_string,
"workspace": self.db.workspace,
"top_k": top_k,
"better_than_threshold": self.cosine_better_than_threshold,
}
# print(SQL)
results = await self.db.query(SQL, params=params, multirows=True)
# print("vector search result:",results)
return results
@dataclass
class OracleGraphStorage(BaseGraphStorage):
"""基于Oracle的图存储模块"""
def __post_init__(self):
"""从graphml文件加载图"""
self._max_batch_size = self.global_config["embedding_batch_num"]
#################### insert method ################
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
"""插入或更新节点"""
# print("go into upsert node method")
entity_name = node_id
entity_type = node_data["entity_type"]
description = node_data["description"]
source_id = node_data["source_id"]
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
content = entity_name + description
contents = [content]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
content_vector = embeddings[0]
merge_sql = SQL_TEMPLATES["merge_node"]
data = {
"workspace": self.db.workspace,
"name": entity_name,
"entity_type": entity_type,
"description": description,
"source_chunk_id": source_id,
"content": content,
"content_vector": content_vector,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
# self._graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
):
"""插入或更新边"""
# print("go into upsert edge method")
source_name = source_node_id
target_name = target_node_id
weight = edge_data["weight"]
keywords = edge_data["keywords"]
description = edge_data["description"]
source_chunk_id = edge_data["source_id"]
logger.debug(
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}"
)
content = keywords + source_name + target_name + description
contents = [content]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
content_vector = embeddings[0]
merge_sql = SQL_TEMPLATES["merge_edge"]
data = {
"workspace": self.db.workspace,
"source_name": source_name,
"target_name": target_name,
"weight": weight,
"keywords": keywords,
"description": description,
"source_chunk_id": source_chunk_id,
"content": content,
"content_vector": content_vector,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
# self._graph.add_edge(source_node_id, target_node_id, **edge_data)
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
"""为节点生成向量"""
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
async def _node2vec_embed(self):
"""为节点生成向量"""
from graspologic import embed
embeddings, nodes = embed.node2vec_embed(
self._graph,
**self.config["node2vec_params"],
)
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids
async def index_done_callback(self):
"""写入graphhml图文件"""
logger.info(
"Node and edge data had been saved into oracle db already, so nothing to do here!"
)
#################### query method #################
async def has_node(self, node_id: str) -> bool:
"""根据节点id检查节点是否存在"""
SQL = SQL_TEMPLATES["has_node"]
params = {"workspace": self.db.workspace, "node_id": node_id}
# print(SQL)
# print(self.db.workspace, node_id)
res = await self.db.query(SQL, params)
if res:
# print("Node exist!",res)
return True
else:
# print("Node not exist!")
return False
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""根据源和目标节点id检查边是否存在"""
SQL = SQL_TEMPLATES["has_edge"]
params = {
"workspace": self.db.workspace,
"source_node_id": source_node_id,
"target_node_id": target_node_id,
}
# print(SQL)
res = await self.db.query(SQL, params)
if res:
# print("Edge exist!",res)
return True
else:
# print("Edge not exist!")
return False
async def node_degree(self, node_id: str) -> int:
"""根据节点id获取节点的度"""
SQL = SQL_TEMPLATES["node_degree"]
params = {"workspace": self.db.workspace, "node_id": node_id}
# print(SQL)
res = await self.db.query(SQL, params)
if res:
# print("Node degree",res["degree"])
return res["degree"]
else:
# print("Edge not exist!")
return 0
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""根据源和目标节点id获取边的度"""
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id)
# print("Edge degree",degree)
return degree
async def get_node(self, node_id: str) -> Union[dict, None]:
"""根据节点id获取节点数据"""
SQL = SQL_TEMPLATES["get_node"]
params = {"workspace": self.db.workspace, "node_id": node_id}
# print(self.db.workspace, node_id)
# print(SQL)
res = await self.db.query(SQL, params)
if res:
# print("Get node!",self.db.workspace, node_id,res)
return res
else:
# print("Can't get node!",self.db.workspace, node_id)
return None
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> Union[dict, None]:
"""根据源和目标节点id获取边"""
SQL = SQL_TEMPLATES["get_edge"]
params = {
"workspace": self.db.workspace,
"source_node_id": source_node_id,
"target_node_id": target_node_id,
}
res = await self.db.query(SQL, params)
if res:
# print("Get edge!",self.db.workspace, source_node_id, target_node_id,res[0])
return res
else:
# print("Edge not exist!",self.db.workspace, source_node_id, target_node_id)
return None
async def get_node_edges(self, source_node_id: str):
"""根据节点id获取节点的所有边"""
if await self.has_node(source_node_id):
SQL = SQL_TEMPLATES["get_node_edges"]
params = {"workspace": self.db.workspace, "source_node_id": source_node_id}
res = await self.db.query(sql=SQL, params=params, multirows=True)
if res:
data = [(i["source_name"], i["target_name"]) for i in res]
# print("Get node edge!",self.db.workspace, source_node_id,data)
return data
else:
# print("Node Edge not exist!",self.db.workspace, source_node_id)
return []
async def get_all_nodes(self, limit: int):
"""查询所有节点"""
SQL = SQL_TEMPLATES["get_all_nodes"]
params = {"workspace": self.db.workspace, "limit": str(limit)}
res = await self.db.query(sql=SQL, params=params, multirows=True)
if res:
return res
async def get_all_edges(self, limit: int):
"""查询所有边"""
SQL = SQL_TEMPLATES["get_all_edges"]
params = {"workspace": self.db.workspace, "limit": str(limit)}
res = await self.db.query(sql=SQL, params=params, multirows=True)
if res:
return res
N_T = {
"full_docs": "LIGHTRAG_DOC_FULL",
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
"chunks": "LIGHTRAG_DOC_CHUNKS",
"entities": "LIGHTRAG_GRAPH_NODES",
"relationships": "LIGHTRAG_GRAPH_EDGES",
}
TABLES = {
"LIGHTRAG_DOC_FULL": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
id varchar(256)PRIMARY KEY,
workspace varchar(1024),
doc_name varchar(1024),
content CLOB,
meta JSON,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_DOC_CHUNKS": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
id varchar(256) PRIMARY KEY,
workspace varchar(1024),
full_doc_id varchar(256),
chunk_order_index NUMBER,
tokens NUMBER,
content CLOB,
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_GRAPH_NODES": {
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_NODES (
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
workspace varchar(1024),
name varchar(2048),
entity_type varchar(1024),
description CLOB,
source_chunk_id varchar(256),
content CLOB,
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_GRAPH_EDGES": {
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_EDGES (
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
workspace varchar(1024),
source_name varchar(2048),
target_name varchar(2048),
weight NUMBER,
keywords CLOB,
description CLOB,
source_chunk_id varchar(256),
content CLOB,
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_LLM_CACHE": {
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
id varchar(256) PRIMARY KEY,
send clob,
return clob,
model varchar(1024),
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_GRAPH": {
"ddl": """CREATE OR REPLACE PROPERTY GRAPH lightrag_graph
VERTEX TABLES (
lightrag_graph_nodes KEY (id)
LABEL entity
PROPERTIES (id,workspace,name) -- ,entity_type,description,source_chunk_id)
)
EDGE TABLES (
lightrag_graph_edges KEY (id)
SOURCE KEY (source_name) REFERENCES lightrag_graph_nodes(name)
DESTINATION KEY (target_name) REFERENCES lightrag_graph_nodes(name)
LABEL has_relation
PROPERTIES (id,workspace,source_name,target_name) -- ,weight, keywords,description,source_chunk_id)
) OPTIONS(ALLOW MIXED PROPERTY TYPES)"""
},
}
SQL_TEMPLATES = {
# SQL for KVStorage
"get_by_id_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
"get_by_id_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
"get_by_ids_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID in ({ids})",
"get_by_ids_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
"merge_doc_full": """ MERGE INTO LIGHTRAG_DOC_FULL a
USING DUAL
ON (a.id = :check_id)
WHEN NOT MATCHED THEN
INSERT(id,content,workspace) values(:id,:content,:workspace)
""",
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS a
USING DUAL
ON (a.id = :check_id)
WHEN NOT MATCHED THEN
INSERT(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector)
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector) """,
# SQL for VectorStorage
"entities": """SELECT name as entity_name FROM
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace)
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
"relationships": """SELECT source_name as src_id, target_name as tgt_id FROM
(SELECT id,source_name,target_name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace)
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
"chunks": """SELECT id FROM
(SELECT id,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace)
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
# SQL for GraphStorage
"has_node": """SELECT * FROM GRAPH_TABLE (lightrag_graph
MATCH (a)
WHERE a.workspace=:workspace AND a.name=:node_id
COLUMNS (a.name))""",
"has_edge": """SELECT * FROM GRAPH_TABLE (lightrag_graph
MATCH (a) -[e]-> (b)
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:source_node_id AND b.name=:target_node_id
COLUMNS (e.source_name,e.target_name) )""",
"node_degree": """SELECT count(1) as degree FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b)
WHERE a.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:node_id or b.name = :node_id
COLUMNS (a.name))""",
"get_node": """SELECT t1.name,t2.entity_type,t2.source_chunk_id as source_id,NVL(t2.description,'') AS description
FROM GRAPH_TABLE (lightrag_graph
MATCH (a)
WHERE a.workspace=:workspace AND a.name=:node_id
COLUMNS (a.name)
) t1 JOIN LIGHTRAG_GRAPH_NODES t2 on t1.name=t2.name
WHERE t2.workspace=:workspace""",
"get_edge": """SELECT t1.source_id,t2.weight,t2.source_chunk_id as source_id,t2.keywords,
NVL(t2.description,'') AS description,NVL(t2.KEYWORDS,'') AS keywords
FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b)
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:source_node_id and b.name = :target_node_id
COLUMNS (e.id,a.name as source_id)
) t1 JOIN LIGHTRAG_GRAPH_EDGES t2 on t1.id=t2.id""",
"get_node_edges": """SELECT source_name,target_name
FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b)
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:source_node_id
COLUMNS (a.name as source_name,b.name as target_name))""",
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a
USING DUAL
ON (a.workspace = :workspace and a.name=:name and a.source_chunk_id=:source_chunk_id)
WHEN NOT MATCHED THEN
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector)
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector) """,
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a
USING DUAL
ON (a.workspace = :workspace and a.source_name=:source_name and a.target_name=:target_name and a.source_chunk_id=:source_chunk_id)
WHEN NOT MATCHED THEN
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """,
"get_all_nodes": """SELECT t1.name as id,t1.entity_type as label,t1.DESCRIPTION,t2.content
FROM LIGHTRAG_GRAPH_NODES t1
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
WHERE t1.workspace=:workspace
order by t1.CREATETIME DESC
fetch first :limit rows only
""",
"get_all_edges": """SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target,
t1.weight,t1.DESCRIPTION,t2.content
FROM LIGHTRAG_GRAPH_EDGES t1
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
WHERE t1.workspace=:workspace
order by t1.CREATETIME DESC
fetch first :limit rows only""",
}
|