File size: 13,284 Bytes
f7ab812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import asyncio
import os
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import partial
from typing import Type, cast

from .llm import (
    gpt_4o_mini_complete,
    openai_embedding,
)
from .operate import (
    chunking_by_token_size,
    extract_entities,
    local_query,
    global_query,
    hybrid_query,
    naive_query,
)

from .utils import (
    EmbeddingFunc,
    compute_mdhash_id,
    limit_async_func_call,
    convert_response_to_json,
    logger,
    set_logger,
)
from .base import (
    BaseGraphStorage,
    BaseKVStorage,
    BaseVectorStorage,
    StorageNameSpace,
    QueryParam,
)

from .storage import (
    JsonKVStorage,
    NanoVectorDBStorage,
    NetworkXStorage,
)

from .kg.neo4j_impl import Neo4JStorage

from .kg.oracle_impl import OracleKVStorage, OracleGraphStorage, OracleVectorDBStorage

# future KG integrations

# from .kg.ArangoDB_impl import (
#     GraphStorage as ArangoDBStorage
# )


def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
    try:
        return asyncio.get_event_loop()

    except RuntimeError:
        logger.info("Creating a new event loop in main thread.")
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)

        return loop


@dataclass
class LightRAG:
    working_dir: str = field(
        default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
    )

    kv_storage: str = field(default="JsonKVStorage")
    vector_storage: str = field(default="NanoVectorDBStorage")
    graph_storage: str = field(default="NetworkXStorage")

    current_log_level = logger.level
    log_level: str = field(default=current_log_level)

    # text chunking
    chunk_token_size: int = 1200
    chunk_overlap_token_size: int = 100
    tiktoken_model_name: str = "gpt-4o-mini"

    # entity extraction
    entity_extract_max_gleaning: int = 1
    entity_summary_to_max_tokens: int = 500

    # node embedding
    node_embedding_algorithm: str = "node2vec"
    node2vec_params: dict = field(
        default_factory=lambda: {
            "dimensions": 1536,
            "num_walks": 10,
            "walk_length": 40,
            "window_size": 2,
            "iterations": 3,
            "random_seed": 3,
        }
    )

    # embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
    embedding_func: EmbeddingFunc = field(default_factory=lambda: openai_embedding)
    embedding_batch_num: int = 32
    embedding_func_max_async: int = 16

    # LLM
    llm_model_func: callable = gpt_4o_mini_complete  # hf_model_complete#
    llm_model_name: str = (
        "meta-llama/Llama-3.2-1B-Instruct"  #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
    )
    llm_model_max_token_size: int = 32768
    llm_model_max_async: int = 16
    llm_model_kwargs: dict = field(default_factory=dict)

    # storage
    vector_db_storage_cls_kwargs: dict = field(default_factory=dict)

    enable_llm_cache: bool = True

    # extension
    addon_params: dict = field(default_factory=dict)
    convert_response_to_json_func: callable = convert_response_to_json

    def __post_init__(self):
        log_file = os.path.join(self.working_dir, "lightrag.log")
        set_logger(log_file)
        logger.setLevel(self.log_level)

        logger.info(f"Logger initialized for working directory: {self.working_dir}")

        _print_config = ",\n  ".join([f"{k} = {v}" for k, v in asdict(self).items()])
        logger.debug(f"LightRAG init with param:\n  {_print_config}\n")

        # @TODO: should move all storage setup here to leverage initial start params attached to self.

        self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
            self._get_storage_class()[self.kv_storage]
        )
        self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class()[
            self.vector_storage
        ]
        self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[
            self.graph_storage
        ]

        if not os.path.exists(self.working_dir):
            logger.info(f"Creating working directory {self.working_dir}")
            os.makedirs(self.working_dir)

        self.llm_response_cache = (
            self.key_string_value_json_storage_cls(
                namespace="llm_response_cache",
                global_config=asdict(self),
                embedding_func=None,
            )
            if self.enable_llm_cache
            else None
        )

        self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
            self.embedding_func
        )

        ####
        # add embedding func by walter
        ####
        self.full_docs = self.key_string_value_json_storage_cls(
            namespace="full_docs",
            global_config=asdict(self),
            embedding_func=self.embedding_func,
        )
        self.text_chunks = self.key_string_value_json_storage_cls(
            namespace="text_chunks",
            global_config=asdict(self),
            embedding_func=self.embedding_func,
        )
        self.chunk_entity_relation_graph = self.graph_storage_cls(
            namespace="chunk_entity_relation", global_config=asdict(self)
        )
        ####
        # add embedding func by walter over
        ####

        self.entities_vdb = self.vector_db_storage_cls(
            namespace="entities",
            global_config=asdict(self),
            embedding_func=self.embedding_func,
            meta_fields={"entity_name"},
        )
        self.relationships_vdb = self.vector_db_storage_cls(
            namespace="relationships",
            global_config=asdict(self),
            embedding_func=self.embedding_func,
            meta_fields={"src_id", "tgt_id"},
        )
        self.chunks_vdb = self.vector_db_storage_cls(
            namespace="chunks",
            global_config=asdict(self),
            embedding_func=self.embedding_func,
        )

        self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
            partial(
                self.llm_model_func,
                hashing_kv=self.llm_response_cache,
                **self.llm_model_kwargs,
            )
        )

    def _get_storage_class(self) -> Type[BaseGraphStorage]:
        return {
            # kv storage
            "JsonKVStorage": JsonKVStorage,
            "OracleKVStorage": OracleKVStorage,
            # vector storage
            "NanoVectorDBStorage": NanoVectorDBStorage,
            "OracleVectorDBStorage": OracleVectorDBStorage,
            # graph storage
            "NetworkXStorage": NetworkXStorage,
            "Neo4JStorage": Neo4JStorage,
            "OracleGraphStorage": OracleGraphStorage,
            # "ArangoDBStorage": ArangoDBStorage
        }

    def insert(self, string_or_strings):
        loop = always_get_an_event_loop()
        return loop.run_until_complete(self.ainsert(string_or_strings))

    async def ainsert(self, string_or_strings):
        update_storage = False
        try:
            if isinstance(string_or_strings, str):
                string_or_strings = [string_or_strings]

            new_docs = {
                compute_mdhash_id(c.strip(), prefix="doc-"): {"content": c.strip()}
                for c in string_or_strings
            }
            _add_doc_keys = await self.full_docs.filter_keys(list(new_docs.keys()))
            new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
            if not len(new_docs):
                logger.warning("All docs are already in the storage")
                return
            update_storage = True
            logger.info(f"[New Docs] inserting {len(new_docs)} docs")

            inserting_chunks = {}
            for doc_key, doc in new_docs.items():
                chunks = {
                    compute_mdhash_id(dp["content"], prefix="chunk-"): {
                        **dp,
                        "full_doc_id": doc_key,
                    }
                    for dp in chunking_by_token_size(
                        doc["content"],
                        overlap_token_size=self.chunk_overlap_token_size,
                        max_token_size=self.chunk_token_size,
                        tiktoken_model=self.tiktoken_model_name,
                    )
                }
                inserting_chunks.update(chunks)
            _add_chunk_keys = await self.text_chunks.filter_keys(
                list(inserting_chunks.keys())
            )
            inserting_chunks = {
                k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
            }
            if not len(inserting_chunks):
                logger.warning("All chunks are already in the storage")
                return
            logger.info(f"[New Chunks] inserting {len(inserting_chunks)} chunks")

            await self.chunks_vdb.upsert(inserting_chunks)

            logger.info("[Entity Extraction]...")
            maybe_new_kg = await extract_entities(
                inserting_chunks,
                knowledge_graph_inst=self.chunk_entity_relation_graph,
                entity_vdb=self.entities_vdb,
                relationships_vdb=self.relationships_vdb,
                global_config=asdict(self),
            )
            if maybe_new_kg is None:
                logger.warning("No new entities and relationships found")
                return
            self.chunk_entity_relation_graph = maybe_new_kg

            await self.full_docs.upsert(new_docs)
            await self.text_chunks.upsert(inserting_chunks)
        finally:
            if update_storage:
                await self._insert_done()

    async def _insert_done(self):
        tasks = []
        for storage_inst in [
            self.full_docs,
            self.text_chunks,
            self.llm_response_cache,
            self.entities_vdb,
            self.relationships_vdb,
            self.chunks_vdb,
            self.chunk_entity_relation_graph,
        ]:
            if storage_inst is None:
                continue
            tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
        await asyncio.gather(*tasks)

    def query(self, query: str, param: QueryParam = QueryParam()):
        loop = always_get_an_event_loop()
        return loop.run_until_complete(self.aquery(query, param))

    async def aquery(self, query: str, param: QueryParam = QueryParam()):
        if param.mode == "local":
            response = await local_query(
                query,
                self.chunk_entity_relation_graph,
                self.entities_vdb,
                self.relationships_vdb,
                self.text_chunks,
                param,
                asdict(self),
            )
        elif param.mode == "global":
            response = await global_query(
                query,
                self.chunk_entity_relation_graph,
                self.entities_vdb,
                self.relationships_vdb,
                self.text_chunks,
                param,
                asdict(self),
            )
        elif param.mode == "hybrid":
            response = await hybrid_query(
                query,
                self.chunk_entity_relation_graph,
                self.entities_vdb,
                self.relationships_vdb,
                self.text_chunks,
                param,
                asdict(self),
            )
        elif param.mode == "naive":
            response = await naive_query(
                query,
                self.chunks_vdb,
                self.text_chunks,
                param,
                asdict(self),
            )
        else:
            raise ValueError(f"Unknown mode {param.mode}")
        await self._query_done()
        return response

    async def _query_done(self):
        tasks = []
        for storage_inst in [self.llm_response_cache]:
            if storage_inst is None:
                continue
            tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
        await asyncio.gather(*tasks)

    def delete_by_entity(self, entity_name: str):
        loop = always_get_an_event_loop()
        return loop.run_until_complete(self.adelete_by_entity(entity_name))

    async def adelete_by_entity(self, entity_name: str):
        entity_name = f'"{entity_name.upper()}"'

        try:
            await self.entities_vdb.delete_entity(entity_name)
            await self.relationships_vdb.delete_relation(entity_name)
            await self.chunk_entity_relation_graph.delete_node(entity_name)

            logger.info(
                f"Entity '{entity_name}' and its relationships have been deleted."
            )
            await self._delete_by_entity_done()
        except Exception as e:
            logger.error(f"Error while deleting entity '{entity_name}': {e}")

    async def _delete_by_entity_done(self):
        tasks = []
        for storage_inst in [
            self.entities_vdb,
            self.relationships_vdb,
            self.chunk_entity_relation_graph,
        ]:
            if storage_inst is None:
                continue
            tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
        await asyncio.gather(*tasks)