File size: 13,284 Bytes
f7ab812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import asyncio
import os
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import partial
from typing import Type, cast
from .llm import (
gpt_4o_mini_complete,
openai_embedding,
)
from .operate import (
chunking_by_token_size,
extract_entities,
local_query,
global_query,
hybrid_query,
naive_query,
)
from .utils import (
EmbeddingFunc,
compute_mdhash_id,
limit_async_func_call,
convert_response_to_json,
logger,
set_logger,
)
from .base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
StorageNameSpace,
QueryParam,
)
from .storage import (
JsonKVStorage,
NanoVectorDBStorage,
NetworkXStorage,
)
from .kg.neo4j_impl import Neo4JStorage
from .kg.oracle_impl import OracleKVStorage, OracleGraphStorage, OracleVectorDBStorage
# future KG integrations
# from .kg.ArangoDB_impl import (
# GraphStorage as ArangoDBStorage
# )
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
try:
return asyncio.get_event_loop()
except RuntimeError:
logger.info("Creating a new event loop in main thread.")
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop
@dataclass
class LightRAG:
working_dir: str = field(
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
)
kv_storage: str = field(default="JsonKVStorage")
vector_storage: str = field(default="NanoVectorDBStorage")
graph_storage: str = field(default="NetworkXStorage")
current_log_level = logger.level
log_level: str = field(default=current_log_level)
# text chunking
chunk_token_size: int = 1200
chunk_overlap_token_size: int = 100
tiktoken_model_name: str = "gpt-4o-mini"
# entity extraction
entity_extract_max_gleaning: int = 1
entity_summary_to_max_tokens: int = 500
# node embedding
node_embedding_algorithm: str = "node2vec"
node2vec_params: dict = field(
default_factory=lambda: {
"dimensions": 1536,
"num_walks": 10,
"walk_length": 40,
"window_size": 2,
"iterations": 3,
"random_seed": 3,
}
)
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
embedding_func: EmbeddingFunc = field(default_factory=lambda: openai_embedding)
embedding_batch_num: int = 32
embedding_func_max_async: int = 16
# LLM
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
llm_model_name: str = (
"meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
)
llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16
llm_model_kwargs: dict = field(default_factory=dict)
# storage
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
enable_llm_cache: bool = True
# extension
addon_params: dict = field(default_factory=dict)
convert_response_to_json_func: callable = convert_response_to_json
def __post_init__(self):
log_file = os.path.join(self.working_dir, "lightrag.log")
set_logger(log_file)
logger.setLevel(self.log_level)
logger.info(f"Logger initialized for working directory: {self.working_dir}")
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
# @TODO: should move all storage setup here to leverage initial start params attached to self.
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
self._get_storage_class()[self.kv_storage]
)
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class()[
self.vector_storage
]
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[
self.graph_storage
]
if not os.path.exists(self.working_dir):
logger.info(f"Creating working directory {self.working_dir}")
os.makedirs(self.working_dir)
self.llm_response_cache = (
self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
)
if self.enable_llm_cache
else None
)
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
self.embedding_func
)
####
# add embedding func by walter
####
self.full_docs = self.key_string_value_json_storage_cls(
namespace="full_docs",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.text_chunks = self.key_string_value_json_storage_cls(
namespace="text_chunks",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.chunk_entity_relation_graph = self.graph_storage_cls(
namespace="chunk_entity_relation", global_config=asdict(self)
)
####
# add embedding func by walter over
####
self.entities_vdb = self.vector_db_storage_cls(
namespace="entities",
global_config=asdict(self),
embedding_func=self.embedding_func,
meta_fields={"entity_name"},
)
self.relationships_vdb = self.vector_db_storage_cls(
namespace="relationships",
global_config=asdict(self),
embedding_func=self.embedding_func,
meta_fields={"src_id", "tgt_id"},
)
self.chunks_vdb = self.vector_db_storage_cls(
namespace="chunks",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
partial(
self.llm_model_func,
hashing_kv=self.llm_response_cache,
**self.llm_model_kwargs,
)
)
def _get_storage_class(self) -> Type[BaseGraphStorage]:
return {
# kv storage
"JsonKVStorage": JsonKVStorage,
"OracleKVStorage": OracleKVStorage,
# vector storage
"NanoVectorDBStorage": NanoVectorDBStorage,
"OracleVectorDBStorage": OracleVectorDBStorage,
# graph storage
"NetworkXStorage": NetworkXStorage,
"Neo4JStorage": Neo4JStorage,
"OracleGraphStorage": OracleGraphStorage,
# "ArangoDBStorage": ArangoDBStorage
}
def insert(self, string_or_strings):
loop = always_get_an_event_loop()
return loop.run_until_complete(self.ainsert(string_or_strings))
async def ainsert(self, string_or_strings):
update_storage = False
try:
if isinstance(string_or_strings, str):
string_or_strings = [string_or_strings]
new_docs = {
compute_mdhash_id(c.strip(), prefix="doc-"): {"content": c.strip()}
for c in string_or_strings
}
_add_doc_keys = await self.full_docs.filter_keys(list(new_docs.keys()))
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if not len(new_docs):
logger.warning("All docs are already in the storage")
return
update_storage = True
logger.info(f"[New Docs] inserting {len(new_docs)} docs")
inserting_chunks = {}
for doc_key, doc in new_docs.items():
chunks = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_key,
}
for dp in chunking_by_token_size(
doc["content"],
overlap_token_size=self.chunk_overlap_token_size,
max_token_size=self.chunk_token_size,
tiktoken_model=self.tiktoken_model_name,
)
}
inserting_chunks.update(chunks)
_add_chunk_keys = await self.text_chunks.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
if not len(inserting_chunks):
logger.warning("All chunks are already in the storage")
return
logger.info(f"[New Chunks] inserting {len(inserting_chunks)} chunks")
await self.chunks_vdb.upsert(inserting_chunks)
logger.info("[Entity Extraction]...")
maybe_new_kg = await extract_entities(
inserting_chunks,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
global_config=asdict(self),
)
if maybe_new_kg is None:
logger.warning("No new entities and relationships found")
return
self.chunk_entity_relation_graph = maybe_new_kg
await self.full_docs.upsert(new_docs)
await self.text_chunks.upsert(inserting_chunks)
finally:
if update_storage:
await self._insert_done()
async def _insert_done(self):
tasks = []
for storage_inst in [
self.full_docs,
self.text_chunks,
self.llm_response_cache,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
]:
if storage_inst is None:
continue
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
await asyncio.gather(*tasks)
def query(self, query: str, param: QueryParam = QueryParam()):
loop = always_get_an_event_loop()
return loop.run_until_complete(self.aquery(query, param))
async def aquery(self, query: str, param: QueryParam = QueryParam()):
if param.mode == "local":
response = await local_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
)
elif param.mode == "global":
response = await global_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
)
elif param.mode == "hybrid":
response = await hybrid_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
)
elif param.mode == "naive":
response = await naive_query(
query,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
)
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
return response
async def _query_done(self):
tasks = []
for storage_inst in [self.llm_response_cache]:
if storage_inst is None:
continue
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
await asyncio.gather(*tasks)
def delete_by_entity(self, entity_name: str):
loop = always_get_an_event_loop()
return loop.run_until_complete(self.adelete_by_entity(entity_name))
async def adelete_by_entity(self, entity_name: str):
entity_name = f'"{entity_name.upper()}"'
try:
await self.entities_vdb.delete_entity(entity_name)
await self.relationships_vdb.delete_relation(entity_name)
await self.chunk_entity_relation_graph.delete_node(entity_name)
logger.info(
f"Entity '{entity_name}' and its relationships have been deleted."
)
await self._delete_by_entity_done()
except Exception as e:
logger.error(f"Error while deleting entity '{entity_name}': {e}")
async def _delete_by_entity_done(self):
tasks = []
for storage_inst in [
self.entities_vdb,
self.relationships_vdb,
self.chunk_entity_relation_graph,
]:
if storage_inst is None:
continue
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
await asyncio.gather(*tasks)
|