File size: 36,377 Bytes
f7ab812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
import asyncio
import json
import re
from typing import Union
from collections import Counter, defaultdict
import warnings
from .utils import (
    logger,
    clean_str,
    compute_mdhash_id,
    decode_tokens_by_tiktoken,
    encode_string_by_tiktoken,
    is_float_regex,
    list_of_list_to_csv,
    pack_user_ass_to_openai_messages,
    split_string_by_multi_markers,
    truncate_list_by_token_size,
    process_combine_contexts,
    locate_json_string_body_from_string,
)
from .base import (
    BaseGraphStorage,
    BaseKVStorage,
    BaseVectorStorage,
    TextChunkSchema,
    QueryParam,
)
from .prompt import GRAPH_FIELD_SEP, PROMPTS


def chunking_by_token_size(
    content: str, overlap_token_size=128, max_token_size=1024, tiktoken_model="gpt-4o"
):
    tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
    results = []
    for index, start in enumerate(
        range(0, len(tokens), max_token_size - overlap_token_size)
    ):
        chunk_content = decode_tokens_by_tiktoken(
            tokens[start : start + max_token_size], model_name=tiktoken_model
        )
        results.append(
            {
                "tokens": min(max_token_size, len(tokens) - start),
                "content": chunk_content.strip(),
                "chunk_order_index": index,
            }
        )
    return results


async def _handle_entity_relation_summary(
    entity_or_relation_name: str,
    description: str,
    global_config: dict,
) -> str:
    use_llm_func: callable = global_config["llm_model_func"]
    llm_max_tokens = global_config["llm_model_max_token_size"]
    tiktoken_model_name = global_config["tiktoken_model_name"]
    summary_max_tokens = global_config["entity_summary_to_max_tokens"]

    tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
    if len(tokens) < summary_max_tokens:  # No need for summary
        return description
    prompt_template = PROMPTS["summarize_entity_descriptions"]
    use_description = decode_tokens_by_tiktoken(
        tokens[:llm_max_tokens], model_name=tiktoken_model_name
    )
    context_base = dict(
        entity_name=entity_or_relation_name,
        description_list=use_description.split(GRAPH_FIELD_SEP),
    )
    use_prompt = prompt_template.format(**context_base)
    logger.debug(f"Trigger summary: {entity_or_relation_name}")
    summary = await use_llm_func(use_prompt, max_tokens=summary_max_tokens)
    return summary


async def _handle_single_entity_extraction(
    record_attributes: list[str],
    chunk_key: str,
):
    if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
        return None
    # add this record as a node in the G
    entity_name = clean_str(record_attributes[1].upper())
    if not entity_name.strip():
        return None
    entity_type = clean_str(record_attributes[2].upper())
    entity_description = clean_str(record_attributes[3])
    entity_source_id = chunk_key
    return dict(
        entity_name=entity_name,
        entity_type=entity_type,
        description=entity_description,
        source_id=entity_source_id,
    )


async def _handle_single_relationship_extraction(
    record_attributes: list[str],
    chunk_key: str,
):
    if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
        return None
    # add this record as edge
    source = clean_str(record_attributes[1].upper())
    target = clean_str(record_attributes[2].upper())
    edge_description = clean_str(record_attributes[3])

    edge_keywords = clean_str(record_attributes[4])
    edge_source_id = chunk_key
    weight = (
        float(record_attributes[-1]) if is_float_regex(record_attributes[-1]) else 1.0
    )
    return dict(
        src_id=source,
        tgt_id=target,
        weight=weight,
        description=edge_description,
        keywords=edge_keywords,
        source_id=edge_source_id,
    )


async def _merge_nodes_then_upsert(
    entity_name: str,
    nodes_data: list[dict],
    knowledge_graph_inst: BaseGraphStorage,
    global_config: dict,
):
    already_entitiy_types = []
    already_source_ids = []
    already_description = []

    already_node = await knowledge_graph_inst.get_node(entity_name)
    if already_node is not None:
        already_entitiy_types.append(already_node["entity_type"])
        already_source_ids.extend(
            split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
        )
        already_description.append(already_node["description"])

    entity_type = sorted(
        Counter(
            [dp["entity_type"] for dp in nodes_data] + already_entitiy_types
        ).items(),
        key=lambda x: x[1],
        reverse=True,
    )[0][0]
    description = GRAPH_FIELD_SEP.join(
        sorted(set([dp["description"] for dp in nodes_data] + already_description))
    )
    source_id = GRAPH_FIELD_SEP.join(
        set([dp["source_id"] for dp in nodes_data] + already_source_ids)
    )
    description = await _handle_entity_relation_summary(
        entity_name, description, global_config
    )
    node_data = dict(
        entity_type=entity_type,
        description=description,
        source_id=source_id,
    )
    await knowledge_graph_inst.upsert_node(
        entity_name,
        node_data=node_data,
    )
    node_data["entity_name"] = entity_name
    return node_data


async def _merge_edges_then_upsert(
    src_id: str,
    tgt_id: str,
    edges_data: list[dict],
    knowledge_graph_inst: BaseGraphStorage,
    global_config: dict,
):
    already_weights = []
    already_source_ids = []
    already_description = []
    already_keywords = []

    if await knowledge_graph_inst.has_edge(src_id, tgt_id):
        already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
        already_weights.append(already_edge["weight"])
        already_source_ids.extend(
            split_string_by_multi_markers(already_edge["source_id"], [GRAPH_FIELD_SEP])
        )
        already_description.append(already_edge["description"])
        already_keywords.extend(
            split_string_by_multi_markers(already_edge["keywords"], [GRAPH_FIELD_SEP])
        )

    weight = sum([dp["weight"] for dp in edges_data] + already_weights)
    description = GRAPH_FIELD_SEP.join(
        sorted(set([dp["description"] for dp in edges_data] + already_description))
    )
    keywords = GRAPH_FIELD_SEP.join(
        sorted(set([dp["keywords"] for dp in edges_data] + already_keywords))
    )
    source_id = GRAPH_FIELD_SEP.join(
        set([dp["source_id"] for dp in edges_data] + already_source_ids)
    )
    for need_insert_id in [src_id, tgt_id]:
        if not (await knowledge_graph_inst.has_node(need_insert_id)):
            await knowledge_graph_inst.upsert_node(
                need_insert_id,
                node_data={
                    "source_id": source_id,
                    "description": description,
                    "entity_type": '"UNKNOWN"',
                },
            )
    description = await _handle_entity_relation_summary(
        (src_id, tgt_id), description, global_config
    )
    await knowledge_graph_inst.upsert_edge(
        src_id,
        tgt_id,
        edge_data=dict(
            weight=weight,
            description=description,
            keywords=keywords,
            source_id=source_id,
        ),
    )

    edge_data = dict(
        src_id=src_id,
        tgt_id=tgt_id,
        description=description,
        keywords=keywords,
    )

    return edge_data


async def extract_entities(
    chunks: dict[str, TextChunkSchema],
    knowledge_graph_inst: BaseGraphStorage,
    entity_vdb: BaseVectorStorage,
    relationships_vdb: BaseVectorStorage,
    global_config: dict,
) -> Union[BaseGraphStorage, None]:
    use_llm_func: callable = global_config["llm_model_func"]
    entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]

    ordered_chunks = list(chunks.items())

    entity_extract_prompt = PROMPTS["entity_extraction"]
    context_base = dict(
        tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
        record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
        completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
        entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
    )
    continue_prompt = PROMPTS["entiti_continue_extraction"]
    if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]

    already_processed = 0
    already_entities = 0
    already_relations = 0

    async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
        nonlocal already_processed, already_entities, already_relations
        chunk_key = chunk_key_dp[0]
        chunk_dp = chunk_key_dp[1]
        content = chunk_dp["content"]
        hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
        final_result = await use_llm_func(hint_prompt)

        history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
        for now_glean_index in range(entity_extract_max_gleaning):
            glean_result = await use_llm_func(continue_prompt, history_messages=history)

            history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
            final_result += glean_result
            if now_glean_index == entity_extract_max_gleaning - 1:
                break

            if_loop_result: str = await use_llm_func(
                if_loop_prompt, history_messages=history
            )
            if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
            if if_loop_result != "yes":
                break

        records = split_string_by_multi_markers(
            final_result,
            [context_base["record_delimiter"], context_base["completion_delimiter"]],
        )

        maybe_nodes = defaultdict(list)
        maybe_edges = defaultdict(list)
        for record in records:
            record = re.search(r"\((.*)\)", record)
            if record is None:
                continue
            record = record.group(1)
            record_attributes = split_string_by_multi_markers(
                record, [context_base["tuple_delimiter"]]
            )
            if_entities = await _handle_single_entity_extraction(
                record_attributes, chunk_key
            )
            if if_entities is not None:
                maybe_nodes[if_entities["entity_name"]].append(if_entities)
                continue

            if_relation = await _handle_single_relationship_extraction(
                record_attributes, chunk_key
            )
            if if_relation is not None:
                maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
                    if_relation
                )
        already_processed += 1
        already_entities += len(maybe_nodes)
        already_relations += len(maybe_edges)
        now_ticks = PROMPTS["process_tickers"][
            already_processed % len(PROMPTS["process_tickers"])
        ]
        print(
            f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
            end="",
            flush=True,
        )
        return dict(maybe_nodes), dict(maybe_edges)

    # use_llm_func is wrapped in ascynio.Semaphore, limiting max_async callings
    results = await asyncio.gather(
        *[_process_single_content(c) for c in ordered_chunks]
    )
    print()  # clear the progress bar
    maybe_nodes = defaultdict(list)
    maybe_edges = defaultdict(list)
    for m_nodes, m_edges in results:
        for k, v in m_nodes.items():
            maybe_nodes[k].extend(v)
        for k, v in m_edges.items():
            maybe_edges[tuple(sorted(k))].extend(v)
    all_entities_data = await asyncio.gather(
        *[
            _merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
            for k, v in maybe_nodes.items()
        ]
    )
    all_relationships_data = await asyncio.gather(
        *[
            _merge_edges_then_upsert(k[0], k[1], v, knowledge_graph_inst, global_config)
            for k, v in maybe_edges.items()
        ]
    )
    if not len(all_entities_data):
        logger.warning("Didn't extract any entities, maybe your LLM is not working")
        return None
    if not len(all_relationships_data):
        logger.warning(
            "Didn't extract any relationships, maybe your LLM is not working"
        )
        return None

    if entity_vdb is not None:
        data_for_vdb = {
            compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
                "content": dp["entity_name"] + dp["description"],
                "entity_name": dp["entity_name"],
            }
            for dp in all_entities_data
        }
        await entity_vdb.upsert(data_for_vdb)

    if relationships_vdb is not None:
        data_for_vdb = {
            compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
                "src_id": dp["src_id"],
                "tgt_id": dp["tgt_id"],
                "content": dp["keywords"]
                + dp["src_id"]
                + dp["tgt_id"]
                + dp["description"],
            }
            for dp in all_relationships_data
        }
        await relationships_vdb.upsert(data_for_vdb)

    return knowledge_graph_inst


async def local_query(
    query,
    knowledge_graph_inst: BaseGraphStorage,
    entities_vdb: BaseVectorStorage,
    relationships_vdb: BaseVectorStorage,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    query_param: QueryParam,
    global_config: dict,
) -> str:
    context = None
    use_model_func = global_config["llm_model_func"]

    kw_prompt_temp = PROMPTS["keywords_extraction"]
    kw_prompt = kw_prompt_temp.format(query=query)
    result = await use_model_func(kw_prompt)
    json_text = locate_json_string_body_from_string(result)

    try:
        keywords_data = json.loads(json_text)
        keywords = keywords_data.get("low_level_keywords", [])
        keywords = ", ".join(keywords)
    except json.JSONDecodeError:
        try:
            result = (
                result.replace(kw_prompt[:-1], "")
                .replace("user", "")
                .replace("model", "")
                .strip()
            )
            result = "{" + result.split("{")[-1].split("}")[0] + "}"

            keywords_data = json.loads(result)
            keywords = keywords_data.get("low_level_keywords", [])
            keywords = ", ".join(keywords)
        # Handle parsing error
        except json.JSONDecodeError as e:
            print(f"JSON parsing error: {e}")
            return PROMPTS["fail_response"]
    if keywords:
        context = await _build_local_query_context(
            keywords,
            knowledge_graph_inst,
            entities_vdb,
            text_chunks_db,
            query_param,
        )
    if query_param.only_need_context:
        return context
    if context is None:
        return PROMPTS["fail_response"]
    sys_prompt_temp = PROMPTS["rag_response"]
    sys_prompt = sys_prompt_temp.format(
        context_data=context, response_type=query_param.response_type
    )
    response = await use_model_func(
        query,
        system_prompt=sys_prompt,
    )
    if len(response) > len(sys_prompt):
        response = (
            response.replace(sys_prompt, "")
            .replace("user", "")
            .replace("model", "")
            .replace(query, "")
            .replace("<system>", "")
            .replace("</system>", "")
            .strip()
        )

    return response


async def _build_local_query_context(
    query,
    knowledge_graph_inst: BaseGraphStorage,
    entities_vdb: BaseVectorStorage,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    query_param: QueryParam,
):
    results = await entities_vdb.query(query, top_k=query_param.top_k)

    if not len(results):
        return None
    node_datas = await asyncio.gather(
        *[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
    )
    if not all([n is not None for n in node_datas]):
        logger.warning("Some nodes are missing, maybe the storage is damaged")
    node_degrees = await asyncio.gather(
        *[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
    )
    node_datas = [
        {**n, "entity_name": k["entity_name"], "rank": d}
        for k, n, d in zip(results, node_datas, node_degrees)
        if n is not None
    ]  # what is this text_chunks_db doing.  dont remember it in airvx.  check the diagram.
    use_text_units = await _find_most_related_text_unit_from_entities(
        node_datas, query_param, text_chunks_db, knowledge_graph_inst
    )
    use_relations = await _find_most_related_edges_from_entities(
        node_datas, query_param, knowledge_graph_inst
    )
    logger.info(
        f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
    )
    entites_section_list = [["id", "entity", "type", "description", "rank"]]
    for i, n in enumerate(node_datas):
        entites_section_list.append(
            [
                i,
                n["entity_name"],
                n.get("entity_type", "UNKNOWN"),
                n.get("description", "UNKNOWN"),
                n["rank"],
            ]
        )
    entities_context = list_of_list_to_csv(entites_section_list)

    relations_section_list = [
        ["id", "source", "target", "description", "keywords", "weight", "rank"]
    ]
    for i, e in enumerate(use_relations):
        relations_section_list.append(
            [
                i,
                e["src_tgt"][0],
                e["src_tgt"][1],
                e["description"],
                e["keywords"],
                e["weight"],
                e["rank"],
            ]
        )
    relations_context = list_of_list_to_csv(relations_section_list)

    text_units_section_list = [["id", "content"]]
    for i, t in enumerate(use_text_units):
        text_units_section_list.append([i, t["content"]])
    text_units_context = list_of_list_to_csv(text_units_section_list)
    return f"""
-----Entities-----
```csv
{entities_context}
```
-----Relationships-----
```csv
{relations_context}
```
-----Sources-----
```csv
{text_units_context}
```
"""


async def _find_most_related_text_unit_from_entities(
    node_datas: list[dict],
    query_param: QueryParam,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    knowledge_graph_inst: BaseGraphStorage,
):
    text_units = [
        split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
        for dp in node_datas
    ]
    edges = await asyncio.gather(
        *[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
    )
    all_one_hop_nodes = set()
    for this_edges in edges:
        if not this_edges:
            continue
        all_one_hop_nodes.update([e[1] for e in this_edges])

    all_one_hop_nodes = list(all_one_hop_nodes)
    all_one_hop_nodes_data = await asyncio.gather(
        *[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes]
    )

    # Add null check for node data
    all_one_hop_text_units_lookup = {
        k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP]))
        for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data)
        if v is not None and "source_id" in v  # Add source_id check
    }

    all_text_units_lookup = {}
    for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)):
        for c_id in this_text_units:
            if c_id not in all_text_units_lookup:
                all_text_units_lookup[c_id] = {
                    "data": await text_chunks_db.get_by_id(c_id),
                    "order": index,
                    "relation_counts": 0,
                }

            if this_edges:
                for e in this_edges:
                    if (
                        e[1] in all_one_hop_text_units_lookup
                        and c_id in all_one_hop_text_units_lookup[e[1]]
                    ):
                        all_text_units_lookup[c_id]["relation_counts"] += 1

    # Filter out None values and ensure data has content
    all_text_units = [
        {"id": k, **v}
        for k, v in all_text_units_lookup.items()
        if v is not None and v.get("data") is not None and "content" in v["data"]
    ]

    if not all_text_units:
        logger.warning("No valid text units found")
        return []

    all_text_units = sorted(
        all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
    )

    all_text_units = truncate_list_by_token_size(
        all_text_units,
        key=lambda x: x["data"]["content"],
        max_token_size=query_param.max_token_for_text_unit,
    )

    all_text_units = [t["data"] for t in all_text_units]
    return all_text_units


async def _find_most_related_edges_from_entities(
    node_datas: list[dict],
    query_param: QueryParam,
    knowledge_graph_inst: BaseGraphStorage,
):
    all_related_edges = await asyncio.gather(
        *[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
    )
    all_edges = []
    seen = set()

    for this_edges in all_related_edges:
        for e in this_edges:
            sorted_edge = tuple(sorted(e))
            if sorted_edge not in seen:
                seen.add(sorted_edge)
                all_edges.append(sorted_edge)

    all_edges_pack = await asyncio.gather(
        *[knowledge_graph_inst.get_edge(e[0], e[1]) for e in all_edges]
    )
    all_edges_degree = await asyncio.gather(
        *[knowledge_graph_inst.edge_degree(e[0], e[1]) for e in all_edges]
    )
    all_edges_data = [
        {"src_tgt": k, "rank": d, **v}
        for k, v, d in zip(all_edges, all_edges_pack, all_edges_degree)
        if v is not None
    ]
    all_edges_data = sorted(
        all_edges_data, key=lambda x: (x["rank"], x["weight"]), reverse=True
    )
    all_edges_data = truncate_list_by_token_size(
        all_edges_data,
        key=lambda x: x["description"],
        max_token_size=query_param.max_token_for_global_context,
    )
    return all_edges_data


async def global_query(
    query,
    knowledge_graph_inst: BaseGraphStorage,
    entities_vdb: BaseVectorStorage,
    relationships_vdb: BaseVectorStorage,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    query_param: QueryParam,
    global_config: dict,
) -> str:
    context = None
    use_model_func = global_config["llm_model_func"]

    kw_prompt_temp = PROMPTS["keywords_extraction"]
    kw_prompt = kw_prompt_temp.format(query=query)
    result = await use_model_func(kw_prompt)
    json_text = locate_json_string_body_from_string(result)

    try:
        keywords_data = json.loads(json_text)
        keywords = keywords_data.get("high_level_keywords", [])
        keywords = ", ".join(keywords)
    except json.JSONDecodeError:
        try:
            result = (
                result.replace(kw_prompt[:-1], "")
                .replace("user", "")
                .replace("model", "")
                .strip()
            )
            result = "{" + result.split("{")[-1].split("}")[0] + "}"

            keywords_data = json.loads(result)
            keywords = keywords_data.get("high_level_keywords", [])
            keywords = ", ".join(keywords)

        except json.JSONDecodeError as e:
            # Handle parsing error
            print(f"JSON parsing error: {e}")
            return PROMPTS["fail_response"]
    if keywords:
        context = await _build_global_query_context(
            keywords,
            knowledge_graph_inst,
            entities_vdb,
            relationships_vdb,
            text_chunks_db,
            query_param,
        )

    if query_param.only_need_context:
        return context
    if context is None:
        return PROMPTS["fail_response"]

    sys_prompt_temp = PROMPTS["rag_response"]
    sys_prompt = sys_prompt_temp.format(
        context_data=context, response_type=query_param.response_type
    )
    response = await use_model_func(
        query,
        system_prompt=sys_prompt,
    )
    if len(response) > len(sys_prompt):
        response = (
            response.replace(sys_prompt, "")
            .replace("user", "")
            .replace("model", "")
            .replace(query, "")
            .replace("<system>", "")
            .replace("</system>", "")
            .strip()
        )

    return response


async def _build_global_query_context(
    keywords,
    knowledge_graph_inst: BaseGraphStorage,
    entities_vdb: BaseVectorStorage,
    relationships_vdb: BaseVectorStorage,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    query_param: QueryParam,
):
    results = await relationships_vdb.query(keywords, top_k=query_param.top_k)

    if not len(results):
        return None

    edge_datas = await asyncio.gather(
        *[knowledge_graph_inst.get_edge(r["src_id"], r["tgt_id"]) for r in results]
    )

    if not all([n is not None for n in edge_datas]):
        logger.warning("Some edges are missing, maybe the storage is damaged")
    edge_degree = await asyncio.gather(
        *[knowledge_graph_inst.edge_degree(r["src_id"], r["tgt_id"]) for r in results]
    )
    edge_datas = [
        {"src_id": k["src_id"], "tgt_id": k["tgt_id"], "rank": d, **v}
        for k, v, d in zip(results, edge_datas, edge_degree)
        if v is not None
    ]
    edge_datas = sorted(
        edge_datas, key=lambda x: (x["rank"], x["weight"]), reverse=True
    )
    edge_datas = truncate_list_by_token_size(
        edge_datas,
        key=lambda x: x["description"],
        max_token_size=query_param.max_token_for_global_context,
    )

    use_entities = await _find_most_related_entities_from_relationships(
        edge_datas, query_param, knowledge_graph_inst
    )
    use_text_units = await _find_related_text_unit_from_relationships(
        edge_datas, query_param, text_chunks_db, knowledge_graph_inst
    )
    logger.info(
        f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units"
    )
    relations_section_list = [
        ["id", "source", "target", "description", "keywords", "weight", "rank"]
    ]
    for i, e in enumerate(edge_datas):
        relations_section_list.append(
            [
                i,
                e["src_id"],
                e["tgt_id"],
                e["description"],
                e["keywords"],
                e["weight"],
                e["rank"],
            ]
        )
    relations_context = list_of_list_to_csv(relations_section_list)

    entites_section_list = [["id", "entity", "type", "description", "rank"]]
    for i, n in enumerate(use_entities):
        entites_section_list.append(
            [
                i,
                n["entity_name"],
                n.get("entity_type", "UNKNOWN"),
                n.get("description", "UNKNOWN"),
                n["rank"],
            ]
        )
    entities_context = list_of_list_to_csv(entites_section_list)

    text_units_section_list = [["id", "content"]]
    for i, t in enumerate(use_text_units):
        text_units_section_list.append([i, t["content"]])
    text_units_context = list_of_list_to_csv(text_units_section_list)

    return f"""
-----Entities-----
```csv
{entities_context}
```
-----Relationships-----
```csv
{relations_context}
```
-----Sources-----
```csv
{text_units_context}
```
"""


async def _find_most_related_entities_from_relationships(
    edge_datas: list[dict],
    query_param: QueryParam,
    knowledge_graph_inst: BaseGraphStorage,
):
    entity_names = []
    seen = set()

    for e in edge_datas:
        if e["src_id"] not in seen:
            entity_names.append(e["src_id"])
            seen.add(e["src_id"])
        if e["tgt_id"] not in seen:
            entity_names.append(e["tgt_id"])
            seen.add(e["tgt_id"])

    node_datas = await asyncio.gather(
        *[knowledge_graph_inst.get_node(entity_name) for entity_name in entity_names]
    )

    node_degrees = await asyncio.gather(
        *[knowledge_graph_inst.node_degree(entity_name) for entity_name in entity_names]
    )
    node_datas = [
        {**n, "entity_name": k, "rank": d}
        for k, n, d in zip(entity_names, node_datas, node_degrees)
    ]

    node_datas = truncate_list_by_token_size(
        node_datas,
        key=lambda x: x["description"],
        max_token_size=query_param.max_token_for_local_context,
    )

    return node_datas


async def _find_related_text_unit_from_relationships(
    edge_datas: list[dict],
    query_param: QueryParam,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    knowledge_graph_inst: BaseGraphStorage,
):
    text_units = [
        split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
        for dp in edge_datas
    ]

    all_text_units_lookup = {}

    for index, unit_list in enumerate(text_units):
        for c_id in unit_list:
            if c_id not in all_text_units_lookup:
                all_text_units_lookup[c_id] = {
                    "data": await text_chunks_db.get_by_id(c_id),
                    "order": index,
                }

    if any([v is None for v in all_text_units_lookup.values()]):
        logger.warning("Text chunks are missing, maybe the storage is damaged")
    all_text_units = [
        {"id": k, **v} for k, v in all_text_units_lookup.items() if v is not None
    ]
    all_text_units = sorted(all_text_units, key=lambda x: x["order"])
    all_text_units = truncate_list_by_token_size(
        all_text_units,
        key=lambda x: x["data"]["content"],
        max_token_size=query_param.max_token_for_text_unit,
    )
    all_text_units: list[TextChunkSchema] = [t["data"] for t in all_text_units]

    return all_text_units


async def hybrid_query(
    query,
    knowledge_graph_inst: BaseGraphStorage,
    entities_vdb: BaseVectorStorage,
    relationships_vdb: BaseVectorStorage,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    query_param: QueryParam,
    global_config: dict,
) -> str:
    low_level_context = None
    high_level_context = None
    use_model_func = global_config["llm_model_func"]

    kw_prompt_temp = PROMPTS["keywords_extraction"]
    kw_prompt = kw_prompt_temp.format(query=query)

    result = await use_model_func(kw_prompt)
    json_text = locate_json_string_body_from_string(result)
    try:
        keywords_data = json.loads(json_text)
        hl_keywords = keywords_data.get("high_level_keywords", [])
        ll_keywords = keywords_data.get("low_level_keywords", [])
        hl_keywords = ", ".join(hl_keywords)
        ll_keywords = ", ".join(ll_keywords)
    except json.JSONDecodeError:
        try:
            result = (
                result.replace(kw_prompt[:-1], "")
                .replace("user", "")
                .replace("model", "")
                .strip()
            )
            result = "{" + result.split("{")[-1].split("}")[0] + "}"
            keywords_data = json.loads(result)
            hl_keywords = keywords_data.get("high_level_keywords", [])
            ll_keywords = keywords_data.get("low_level_keywords", [])
            hl_keywords = ", ".join(hl_keywords)
            ll_keywords = ", ".join(ll_keywords)
        # Handle parsing error
        except json.JSONDecodeError as e:
            print(f"JSON parsing error: {e}")
            return PROMPTS["fail_response"]

    if ll_keywords:
        low_level_context = await _build_local_query_context(
            ll_keywords,
            knowledge_graph_inst,
            entities_vdb,
            text_chunks_db,
            query_param,
        )

    if hl_keywords:
        high_level_context = await _build_global_query_context(
            hl_keywords,
            knowledge_graph_inst,
            entities_vdb,
            relationships_vdb,
            text_chunks_db,
            query_param,
        )

    context = combine_contexts(high_level_context, low_level_context)

    if query_param.only_need_context:
        return context
    if context is None:
        return PROMPTS["fail_response"]

    sys_prompt_temp = PROMPTS["rag_response"]
    sys_prompt = sys_prompt_temp.format(
        context_data=context, response_type=query_param.response_type
    )
    response = await use_model_func(
        query,
        system_prompt=sys_prompt,
    )
    if len(response) > len(sys_prompt):
        response = (
            response.replace(sys_prompt, "")
            .replace("user", "")
            .replace("model", "")
            .replace(query, "")
            .replace("<system>", "")
            .replace("</system>", "")
            .strip()
        )
    return response


def combine_contexts(high_level_context, low_level_context):
    # Function to extract entities, relationships, and sources from context strings

    def extract_sections(context):
        entities_match = re.search(
            r"-----Entities-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
        )
        relationships_match = re.search(
            r"-----Relationships-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
        )
        sources_match = re.search(
            r"-----Sources-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
        )

        entities = entities_match.group(1) if entities_match else ""
        relationships = relationships_match.group(1) if relationships_match else ""
        sources = sources_match.group(1) if sources_match else ""

        return entities, relationships, sources

    # Extract sections from both contexts

    if high_level_context is None:
        warnings.warn(
            "High Level context is None. Return empty High entity/relationship/source"
        )
        hl_entities, hl_relationships, hl_sources = "", "", ""
    else:
        hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context)

    if low_level_context is None:
        warnings.warn(
            "Low Level context is None. Return empty Low entity/relationship/source"
        )
        ll_entities, ll_relationships, ll_sources = "", "", ""
    else:
        ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context)

    # Combine and deduplicate the entities
    combined_entities = process_combine_contexts(hl_entities, ll_entities)

    # Combine and deduplicate the relationships
    combined_relationships = process_combine_contexts(
        hl_relationships, ll_relationships
    )

    # Combine and deduplicate the sources
    combined_sources = process_combine_contexts(hl_sources, ll_sources)

    # Format the combined context
    return f"""
-----Entities-----
```csv
{combined_entities}
```
-----Relationships-----
```csv
{combined_relationships}
```
-----Sources-----
```csv
{combined_sources}
```
"""


async def naive_query(
    query,
    chunks_vdb: BaseVectorStorage,
    text_chunks_db: BaseKVStorage[TextChunkSchema],
    query_param: QueryParam,
    global_config: dict,
):
    use_model_func = global_config["llm_model_func"]
    results = await chunks_vdb.query(query, top_k=query_param.top_k)
    if not len(results):
        return PROMPTS["fail_response"]
    chunks_ids = [r["id"] for r in results]
    chunks = await text_chunks_db.get_by_ids(chunks_ids)

    maybe_trun_chunks = truncate_list_by_token_size(
        chunks,
        key=lambda x: x["content"],
        max_token_size=query_param.max_token_for_text_unit,
    )
    logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
    section = "--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
    if query_param.only_need_context:
        return section
    sys_prompt_temp = PROMPTS["naive_rag_response"]
    sys_prompt = sys_prompt_temp.format(
        content_data=section, response_type=query_param.response_type
    )
    response = await use_model_func(
        query,
        system_prompt=sys_prompt,
    )

    if len(response) > len(sys_prompt):
        response = (
            response[len(sys_prompt) :]
            .replace(sys_prompt, "")
            .replace("user", "")
            .replace("model", "")
            .replace(query, "")
            .replace("<system>", "")
            .replace("</system>", "")
            .strip()
        )

    return response