File size: 10,684 Bytes
f7ab812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import asyncio
import html
import os
from dataclasses import dataclass
from typing import Any, Union, cast
import networkx as nx
import numpy as np
from nano_vectordb import NanoVectorDB

from .utils import (
    logger,
    load_json,
    write_json,
    compute_mdhash_id,
)

from .base import (
    BaseGraphStorage,
    BaseKVStorage,
    BaseVectorStorage,
)


@dataclass
class JsonKVStorage(BaseKVStorage):
    def __post_init__(self):
        working_dir = self.global_config["working_dir"]
        self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
        self._data = load_json(self._file_name) or {}
        logger.info(f"Load KV {self.namespace} with {len(self._data)} data")

    async def all_keys(self) -> list[str]:
        return list(self._data.keys())

    async def index_done_callback(self):
        write_json(self._data, self._file_name)

    async def get_by_id(self, id):
        return self._data.get(id, None)

    async def get_by_ids(self, ids, fields=None):
        if fields is None:
            return [self._data.get(id, None) for id in ids]
        return [
            (
                {k: v for k, v in self._data[id].items() if k in fields}
                if self._data.get(id, None)
                else None
            )
            for id in ids
        ]

    async def filter_keys(self, data: list[str]) -> set[str]:
        return set([s for s in data if s not in self._data])

    async def upsert(self, data: dict[str, dict]):
        left_data = {k: v for k, v in data.items() if k not in self._data}
        self._data.update(left_data)
        return left_data

    async def drop(self):
        self._data = {}


@dataclass
class NanoVectorDBStorage(BaseVectorStorage):
    cosine_better_than_threshold: float = 0.2

    def __post_init__(self):
        self._client_file_name = os.path.join(
            self.global_config["working_dir"], f"vdb_{self.namespace}.json"
        )
        self._max_batch_size = self.global_config["embedding_batch_num"]
        self._client = NanoVectorDB(
            self.embedding_func.embedding_dim, storage_file=self._client_file_name
        )
        self.cosine_better_than_threshold = self.global_config.get(
            "cosine_better_than_threshold", self.cosine_better_than_threshold
        )

    async def upsert(self, data: dict[str, dict]):
        logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
        if not len(data):
            logger.warning("You insert an empty data to vector DB")
            return []
        list_data = [
            {
                "__id__": k,
                **{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
            }
            for k, v in data.items()
        ]
        contents = [v["content"] for v in data.values()]
        batches = [
            contents[i : i + self._max_batch_size]
            for i in range(0, len(contents), self._max_batch_size)
        ]
        embeddings_list = await asyncio.gather(
            *[self.embedding_func(batch) for batch in batches]
        )
        embeddings = np.concatenate(embeddings_list)
        for i, d in enumerate(list_data):
            d["__vector__"] = embeddings[i]
        results = self._client.upsert(datas=list_data)
        return results

    async def query(self, query: str, top_k=5):
        embedding = await self.embedding_func([query])
        embedding = embedding[0]
        results = self._client.query(
            query=embedding,
            top_k=top_k,
            better_than_threshold=self.cosine_better_than_threshold,
        )
        results = [
            {**dp, "id": dp["__id__"], "distance": dp["__metrics__"]} for dp in results
        ]
        return results

    @property
    def client_storage(self):
        return getattr(self._client, "_NanoVectorDB__storage")

    async def delete_entity(self, entity_name: str):
        try:
            entity_id = [compute_mdhash_id(entity_name, prefix="ent-")]

            if self._client.get(entity_id):
                self._client.delete(entity_id)
                logger.info(f"Entity {entity_name} have been deleted.")
            else:
                logger.info(f"No entity found with name {entity_name}.")
        except Exception as e:
            logger.error(f"Error while deleting entity {entity_name}: {e}")

    async def delete_relation(self, entity_name: str):
        try:
            relations = [
                dp
                for dp in self.client_storage["data"]
                if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
            ]
            ids_to_delete = [relation["__id__"] for relation in relations]

            if ids_to_delete:
                self._client.delete(ids_to_delete)
                logger.info(
                    f"All relations related to entity {entity_name} have been deleted."
                )
            else:
                logger.info(f"No relations found for entity {entity_name}.")
        except Exception as e:
            logger.error(
                f"Error while deleting relations for entity {entity_name}: {e}"
            )

    async def index_done_callback(self):
        self._client.save()


@dataclass
class NetworkXStorage(BaseGraphStorage):
    @staticmethod
    def load_nx_graph(file_name) -> nx.Graph:
        if os.path.exists(file_name):
            return nx.read_graphml(file_name)
        return None

    @staticmethod
    def write_nx_graph(graph: nx.Graph, file_name):
        logger.info(
            f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
        )
        nx.write_graphml(graph, file_name)

    @staticmethod
    def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph:
        """Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
        Return the largest connected component of the graph, with nodes and edges sorted in a stable way.
        """
        from graspologic.utils import largest_connected_component

        graph = graph.copy()
        graph = cast(nx.Graph, largest_connected_component(graph))
        node_mapping = {
            node: html.unescape(node.upper().strip()) for node in graph.nodes()
        }  # type: ignore
        graph = nx.relabel_nodes(graph, node_mapping)
        return NetworkXStorage._stabilize_graph(graph)

    @staticmethod
    def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
        """Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
        Ensure an undirected graph with the same relationships will always be read the same way.
        """
        fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()

        sorted_nodes = graph.nodes(data=True)
        sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])

        fixed_graph.add_nodes_from(sorted_nodes)
        edges = list(graph.edges(data=True))

        if not graph.is_directed():

            def _sort_source_target(edge):
                source, target, edge_data = edge
                if source > target:
                    temp = source
                    source = target
                    target = temp
                return source, target, edge_data

            edges = [_sort_source_target(edge) for edge in edges]

        def _get_edge_key(source: Any, target: Any) -> str:
            return f"{source} -> {target}"

        edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))

        fixed_graph.add_edges_from(edges)
        return fixed_graph

    def __post_init__(self):
        self._graphml_xml_file = os.path.join(
            self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
        )
        preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
        if preloaded_graph is not None:
            logger.info(
                f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
            )
        self._graph = preloaded_graph or nx.Graph()
        self._node_embed_algorithms = {
            "node2vec": self._node2vec_embed,
        }

    async def index_done_callback(self):
        NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)

    async def has_node(self, node_id: str) -> bool:
        return self._graph.has_node(node_id)

    async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
        return self._graph.has_edge(source_node_id, target_node_id)

    async def get_node(self, node_id: str) -> Union[dict, None]:
        return self._graph.nodes.get(node_id)

    async def node_degree(self, node_id: str) -> int:
        return self._graph.degree(node_id)

    async def edge_degree(self, src_id: str, tgt_id: str) -> int:
        return self._graph.degree(src_id) + self._graph.degree(tgt_id)

    async def get_edge(
        self, source_node_id: str, target_node_id: str
    ) -> Union[dict, None]:
        return self._graph.edges.get((source_node_id, target_node_id))

    async def get_node_edges(self, source_node_id: str):
        if self._graph.has_node(source_node_id):
            return list(self._graph.edges(source_node_id))
        return None

    async def upsert_node(self, node_id: str, node_data: dict[str, str]):
        self._graph.add_node(node_id, **node_data)

    async def upsert_edge(
        self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
    ):
        self._graph.add_edge(source_node_id, target_node_id, **edge_data)

    async def delete_node(self, node_id: str):
        """
        Delete a node from the graph based on the specified node_id.

        :param node_id: The node_id to delete
        """
        if self._graph.has_node(node_id):
            self._graph.remove_node(node_id)
            logger.info(f"Node {node_id} deleted from the graph.")
        else:
            logger.warning(f"Node {node_id} not found in the graph for deletion.")

    async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
        if algorithm not in self._node_embed_algorithms:
            raise ValueError(f"Node embedding algorithm {algorithm} not supported")
        return await self._node_embed_algorithms[algorithm]()

    # @TODO: NOT USED
    async def _node2vec_embed(self):
        from graspologic import embed

        embeddings, nodes = embed.node2vec_embed(
            self._graph,
            **self.global_config["node2vec_params"],
        )

        nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
        return embeddings, nodes_ids