File size: 6,299 Bytes
f7ab812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import (
    mean_squared_error,
    mean_absolute_error,
    root_mean_squared_error,
)
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from constants import HES
import pandas as pd
import matplotlib.pyplot as plt


def choose_model(model: str = "rf"):
    """
    Choose the model to use for training.

    Parameters:
    model (str): The model to use, it can be "rf" for Random Forest or "xgb" for XGBoost.

    Returns:
    model: The training model.
    """
    if model == "rf":
        rf = RandomForestRegressor()
        return rf
    elif model == "xgb":
        xgb = XGBRegressor()
        return xgb
    elif model == "lgbm":
        lgbm = LGBMRegressor()
        return lgbm
    else:
        raise ValueError("Invalid model name")


def training_testing_data(
    df: pd.DataFrame,
    train_start: str,
    train_end: str,
    test_start: str,
    test_end: str,
    train_start_bis: str = None,
    train_end_bis: str = None,
    target: str = "cpih_medical",
    columns: list = ["cpih", *HES],
) -> tuple:
    """
    Split the data into training and testing sets.

    Parameters:
    df (pd.DataFrame): The DataFrame containing the data.
    target (str): The target column.
    train_start (str): The start date for the training set, in the format "YYYY-MM-DD".
    train_end (str): The end date for the training set, in the format "YYYY-MM-DD".
    test_start (str): The start date for the testing set, in the format "YYYY-MM-DD".
    test_end (str): The end date for the testing set, in the format "YYYY-MM-DD".
    train_start_bis (str): The start date for the additional training set, in the format "YYYY-MM-DD".
    train_end_bis (str): The end date for the additional training set, in the format "YYYY-MM-DD".
    columns (list): The columns to use as features.

    Returns:
    tuple: A tuple containing the training and testing sets."""
    if train_start_bis and train_end_bis:
        train = df[
            ((df["date"] >= train_start) & (df["date"] <= train_end))
            | ((df["date"] >= train_start_bis) & (df["date"] <= train_end_bis))
        ]
    else:
        train = df[(df["date"] >= train_start) & (df["date"] <= train_end)]
    test = df[(df["date"] >= test_start) & (df["date"] <= test_end)]
    X_train = train[columns]
    y_train = train[target]
    X_test = test[columns]
    y_test = test[target]
    return X_train, y_train, X_test, y_test


def train_model(model, X_train, y_train, X_test, y_test) -> tuple:
    """
    Train the model on the training data and evaluate it on the testing data.

    Parameters:
    model: The model to train.
    X_train: The features for the training set.
    y_train: The target for the training set.
    X_test: The features for the testing set.
    y_test: The target for the testing set.

    Returns:
    float: The R^2 score of the model.
    float: The mean absolute error of the model.
    float: The mean squared error of the model.
    float: The root mean squared error of the model."""
    model.fit(X_train, y_train)
    # display feature importance
    feature_importances = model.feature_importances_
    importance_df = pd.DataFrame(
        {"Feature": X_train.columns, "Importance": feature_importances}
    )
    importance_df = importance_df.sort_values(by="Importance", ascending=False)
    print(f"Feature Importance: \n{importance_df}")
    y_pred = model.predict(X_test)
    r2 = model.score(X_test, y_test)
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = root_mean_squared_error(y_test, y_pred)
    return r2, mae, mse, rmse


def get_best_params(model, X_train, y_train, X_test, y_test, param_grid):
    """
    Find the best hyperparameters for the model using grid search.

    Parameters:
    model: The model to train.
    X_train: The features for the training set.
    y_train: The target for the training set.
    X_test: The features for the testing set.
    y_test: The target for the testing set.
    param_grid: The hyperparameters to search over.

    Returns:
    dict: The best hyperparameters for the model."""
    grid_search = GridSearchCV(model, param_grid, cv=5, n_jobs=-1)
    grid_search.fit(X_train, y_train)
    best_params = grid_search.best_params_
    return best_params


def plot(
    df: pd.DataFrame,
    model,
    test_start: str,
    test_end: str,
    target: str,
    features: list,
):
    """
    Plot the predicted and actual values of the target variable.

    Parameters:
    df (pd.DataFrame): The DataFrame containing the data.
    model: The model to use.
    test_start (str): The start date for the testing set, in the format "YYYY-MM-DD".
    test_end (str): The end date for the testing set, in the format "YYYY-MM-DD".
    target (str): The target column.
    features (list): The features to use.
    """

    dates_all = df["date"]
    actual_all = df[target]
    dates_new = df[(df["date"] >= test_start) & (df["date"] <= test_end)]["date"]
    actual_new = df[(df["date"] >= test_start) & (df["date"] <= test_end)][target]
    predicted_new = model.predict(
        df[(df["date"] >= test_start) & (df["date"] <= test_end)][features]
    )

    plt.figure(figsize=(12, 6))
    plt.scatter(
        dates_new,
        predicted_new,
        color="blue",
        alpha=0.7,
        label="Predicted CPIH (2022/2023)",
        zorder=2,
    )
    plt.scatter(
        dates_new,
        actual_new,
        color="orange",
        alpha=0.7,
        label="Actual CPIH (2022/2023)",
        zorder=2,
    )
    plt.plot(
        dates_new, predicted_new, color="blue", linestyle="--", alpha=0.7, zorder=1
    )
    plt.plot(
        dates_all,
        actual_all,
        color="green",
        alpha=0.8,
        label="Actual CPIH (All Years)",
        zorder=0,
    )

    plt.title(f"CPIH Medical: Test on {test_start} to {test_end}", fontsize=14)
    plt.xlabel("Date", fontsize=12)
    plt.ylabel("CPIH Medical", fontsize=12)
    plt.xticks(rotation=45)
    plt.legend(fontsize=10)
    plt.grid(alpha=0.3)

    plt.tight_layout()
    plt.savefig(f"quanti/data/CPIH Medical Test {test_start} to {test_end}.png")
    plt.show()