|
from openai import OpenAI |
|
|
|
|
|
|
|
|
|
def openai_complete_if_cache( |
|
model="gpt-4o-mini", prompt=None, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
openai_client = OpenAI() |
|
|
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
messages.extend(history_messages) |
|
messages.append({"role": "user", "content": prompt}) |
|
|
|
response = openai_client.chat.completions.create( |
|
model=model, messages=messages, **kwargs |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
if __name__ == "__main__": |
|
description = "" |
|
prompt = f""" |
|
Given the following description of a dataset: |
|
|
|
{description} |
|
|
|
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset. |
|
|
|
Output the results in the following structure: |
|
- User 1: [user description] |
|
- Task 1: [task description] |
|
- Question 1: |
|
- Question 2: |
|
- Question 3: |
|
- Question 4: |
|
- Question 5: |
|
- Task 2: [task description] |
|
... |
|
- Task 5: [task description] |
|
- User 2: [user description] |
|
... |
|
- User 5: [user description] |
|
... |
|
""" |
|
|
|
result = openai_complete_if_cache(model="gpt-4o-mini", prompt=prompt) |
|
|
|
file_path = "./queries.txt" |
|
with open(file_path, "w") as file: |
|
file.write(result) |
|
|
|
print(f"Queries written to {file_path}") |
|
|