|
from fastapi import FastAPI, HTTPException, File, UploadFile |
|
from contextlib import asynccontextmanager |
|
from pydantic import BaseModel |
|
from typing import Optional |
|
|
|
import sys |
|
import os |
|
from pathlib import Path |
|
|
|
import asyncio |
|
import nest_asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm import openai_complete_if_cache, openai_embedding |
|
from lightrag.utils import EmbeddingFunc |
|
import numpy as np |
|
|
|
from lightrag.kg.oracle_impl import OracleDB |
|
|
|
|
|
print(os.getcwd()) |
|
|
|
script_directory = Path(__file__).resolve().parent.parent |
|
sys.path.append(os.path.abspath(script_directory)) |
|
|
|
|
|
|
|
nest_asyncio.apply() |
|
|
|
DEFAULT_RAG_DIR = "index_default" |
|
|
|
|
|
|
|
|
|
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/" |
|
APIKEY = "ocigenerativeai" |
|
|
|
|
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}") |
|
print(f"WORKING_DIR: {WORKING_DIR}") |
|
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus") |
|
print(f"LLM_MODEL: {LLM_MODEL}") |
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0") |
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}") |
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512)) |
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}") |
|
|
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
LLM_MODEL, |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
api_key=APIKEY, |
|
base_url=BASE_URL, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await openai_embedding( |
|
texts, |
|
model=EMBEDDING_MODEL, |
|
api_key=APIKEY, |
|
base_url=BASE_URL, |
|
) |
|
|
|
|
|
async def get_embedding_dim(): |
|
test_text = ["This is a test sentence."] |
|
embedding = await embedding_func(test_text) |
|
embedding_dim = embedding.shape[1] |
|
return embedding_dim |
|
|
|
|
|
async def init(): |
|
|
|
embedding_dimension = await get_embedding_dim() |
|
print(f"Detected embedding dimension: {embedding_dimension}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
oracle_db = OracleDB( |
|
config={ |
|
"user": "", |
|
"password": "", |
|
"dsn": "", |
|
"config_dir": "", |
|
"wallet_location": "", |
|
"wallet_password": "", |
|
"workspace": "", |
|
} |
|
) |
|
|
|
|
|
await oracle_db.check_tables() |
|
|
|
|
|
rag = LightRAG( |
|
enable_llm_cache=False, |
|
working_dir=WORKING_DIR, |
|
chunk_token_size=512, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=embedding_dimension, |
|
max_token_size=512, |
|
func=embedding_func, |
|
), |
|
graph_storage="OracleGraphStorage", |
|
kv_storage="OracleKVStorage", |
|
vector_storage="OracleVectorDBStorage", |
|
) |
|
|
|
|
|
rag.graph_storage_cls.db = oracle_db |
|
rag.key_string_value_json_storage_cls.db = oracle_db |
|
rag.vector_db_storage_cls.db = oracle_db |
|
|
|
return rag |
|
|
|
|
|
|
|
|
|
|
|
class QueryRequest(BaseModel): |
|
query: str |
|
mode: str = "hybrid" |
|
only_need_context: bool = False |
|
|
|
|
|
class InsertRequest(BaseModel): |
|
text: str |
|
|
|
|
|
class Response(BaseModel): |
|
status: str |
|
data: Optional[str] = None |
|
message: Optional[str] = None |
|
|
|
|
|
|
|
|
|
rag = None |
|
|
|
|
|
@asynccontextmanager |
|
async def lifespan(app: FastAPI): |
|
global rag |
|
rag = await init() |
|
print("done!") |
|
yield |
|
|
|
|
|
app = FastAPI( |
|
title="LightRAG API", description="API for RAG operations", lifespan=lifespan |
|
) |
|
|
|
|
|
@app.post("/query", response_model=Response) |
|
async def query_endpoint(request: QueryRequest): |
|
try: |
|
|
|
result = await rag.aquery( |
|
request.query, |
|
param=QueryParam( |
|
mode=request.mode, only_need_context=request.only_need_context |
|
), |
|
) |
|
return Response(status="success", data=result) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
@app.post("/insert", response_model=Response) |
|
async def insert_endpoint(request: InsertRequest): |
|
try: |
|
loop = asyncio.get_event_loop() |
|
await loop.run_in_executor(None, lambda: rag.insert(request.text)) |
|
return Response(status="success", message="Text inserted successfully") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
@app.post("/insert_file", response_model=Response) |
|
async def insert_file(file: UploadFile = File(...)): |
|
try: |
|
file_content = await file.read() |
|
|
|
try: |
|
content = file_content.decode("utf-8") |
|
except UnicodeDecodeError: |
|
|
|
content = file_content.decode("gbk") |
|
|
|
loop = asyncio.get_event_loop() |
|
await loop.run_in_executor(None, lambda: rag.insert(content)) |
|
|
|
return Response( |
|
status="success", |
|
message=f"File content from {file.filename} inserted successfully", |
|
) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
@app.get("/health") |
|
async def health_check(): |
|
return {"status": "healthy"} |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
|
|
uvicorn.run(app, host="0.0.0.0", port=8020) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|