|
import os |
|
|
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm import lmdeploy_model_if_cache, hf_embedding |
|
from lightrag.utils import EmbeddingFunc |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def lmdeploy_model_complete( |
|
prompt=None, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"] |
|
return await lmdeploy_model_if_cache( |
|
model_name, |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
|
|
|
|
|
|
|
|
chat_template="llama3", |
|
|
|
|
|
**kwargs, |
|
) |
|
|
|
|
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=lmdeploy_model_complete, |
|
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=384, |
|
max_token_size=5000, |
|
func=lambda texts: hf_embedding( |
|
texts, |
|
tokenizer=AutoTokenizer.from_pretrained( |
|
"sentence-transformers/all-MiniLM-L6-v2" |
|
), |
|
embed_model=AutoModel.from_pretrained( |
|
"sentence-transformers/all-MiniLM-L6-v2" |
|
), |
|
), |
|
), |
|
) |
|
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) |
|
) |
|
|