import os import copy from functools import lru_cache import json import aioboto3 import aiohttp import numpy as np import ollama from openai import ( AsyncOpenAI, APIConnectionError, RateLimitError, Timeout, AsyncAzureOpenAI, ) import base64 import struct from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from transformers import AutoTokenizer, AutoModelForCausalLM import torch from pydantic import BaseModel, Field from typing import List, Dict, Callable, Any from .base import BaseKVStorage from .utils import compute_args_hash, wrap_embedding_func_with_attrs os.environ["TOKENIZERS_PARALLELISM"] = "false" @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), ) async def openai_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs, ) -> str: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] response = await openai_async_client.chat.completions.create( model=model, messages=messages, **kwargs ) if hashing_kv is not None: await hashing_kv.upsert( {args_hash: {"return": response.choices[0].message.content, "model": model}} ) return response.choices[0].message.content @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), ) async def azure_openai_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs, ): if api_key: os.environ["AZURE_OPENAI_API_KEY"] = api_key if base_url: os.environ["AZURE_OPENAI_ENDPOINT"] = base_url openai_async_client = AsyncAzureOpenAI( azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_API_KEY"), api_version=os.getenv("AZURE_OPENAI_API_VERSION"), ) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) if prompt is not None: messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] response = await openai_async_client.chat.completions.create( model=model, messages=messages, **kwargs ) if hashing_kv is not None: await hashing_kv.upsert( {args_hash: {"return": response.choices[0].message.content, "model": model}} ) return response.choices[0].message.content class BedrockError(Exception): """Generic error for issues related to Amazon Bedrock""" @retry( stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, max=60), retry=retry_if_exception_type((BedrockError)), ) async def bedrock_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs, ) -> str: os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( "AWS_ACCESS_KEY_ID", aws_access_key_id ) os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( "AWS_SECRET_ACCESS_KEY", aws_secret_access_key ) os.environ["AWS_SESSION_TOKEN"] = os.environ.get( "AWS_SESSION_TOKEN", aws_session_token ) # Fix message history format messages = [] for history_message in history_messages: message = copy.copy(history_message) message["content"] = [{"text": message["content"]}] messages.append(message) # Add user prompt messages.append({"role": "user", "content": [{"text": prompt}]}) # Initialize Converse API arguments args = {"modelId": model, "messages": messages} # Define system prompt if system_prompt: args["system"] = [{"text": system_prompt}] # Map and set up inference parameters inference_params_map = { "max_tokens": "maxTokens", "top_p": "topP", "stop_sequences": "stopSequences", } if inference_params := list( set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"]) ): args["inferenceConfig"] = {} for param in inference_params: args["inferenceConfig"][inference_params_map.get(param, param)] = ( kwargs.pop(param) ) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] # Call model via Converse API session = aioboto3.Session() async with session.client("bedrock-runtime") as bedrock_async_client: try: response = await bedrock_async_client.converse(**args, **kwargs) except Exception as e: raise BedrockError(e) if hashing_kv is not None: await hashing_kv.upsert( { args_hash: { "return": response["output"]["message"]["content"][0]["text"], "model": model, } } ) return response["output"]["message"]["content"][0]["text"] @lru_cache(maxsize=1) def initialize_hf_model(model_name): hf_tokenizer = AutoTokenizer.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) hf_model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) if hf_tokenizer.pad_token is None: hf_tokenizer.pad_token = hf_tokenizer.eos_token return hf_model, hf_tokenizer async def hf_model_if_cache( model, prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: model_name = model hf_model, hf_tokenizer = initialize_hf_model(model_name) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] input_prompt = "" try: input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: try: ori_message = copy.deepcopy(messages) if messages[0]["role"] == "system": messages[1]["content"] = ( "" + messages[0]["content"] + "\n" + messages[1]["content"] ) messages = messages[1:] input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: len_message = len(ori_message) for msgid in range(len_message): input_prompt = ( input_prompt + "<" + ori_message[msgid]["role"] + ">" + ori_message[msgid]["content"] + "\n" ) input_ids = hf_tokenizer( input_prompt, return_tensors="pt", padding=True, truncation=True ).to("cuda") inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()} output = hf_model.generate( **input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True ) response_text = hf_tokenizer.decode( output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True ) if hashing_kv is not None: await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}}) return response_text async def ollama_model_if_cache( model, prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: kwargs.pop("max_tokens", None) kwargs.pop("response_format", None) host = kwargs.pop("host", None) timeout = kwargs.pop("timeout", None) ollama_client = ollama.AsyncClient(host=host, timeout=timeout) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] response = await ollama_client.chat(model=model, messages=messages, **kwargs) result = response["message"]["content"] if hashing_kv is not None: await hashing_kv.upsert({args_hash: {"return": result, "model": model}}) return result @lru_cache(maxsize=1) def initialize_lmdeploy_pipeline( model, tp=1, chat_template=None, log_level="WARNING", model_format="hf", quant_policy=0, ): from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig lmdeploy_pipe = pipeline( model_path=model, backend_config=TurbomindEngineConfig( tp=tp, model_format=model_format, quant_policy=quant_policy ), chat_template_config=ChatTemplateConfig(model_name=chat_template) if chat_template else None, log_level="WARNING", ) return lmdeploy_pipe async def lmdeploy_model_if_cache( model, prompt, system_prompt=None, history_messages=[], chat_template=None, model_format="hf", quant_policy=0, **kwargs, ) -> str: """ Args: model (str): The path to the model. It could be one of the following options: - i) A local directory path of a turbomind model which is converted by `lmdeploy convert` command or download from ii) and iii). - ii) The model_id of a lmdeploy-quantized model hosted inside a model repo on huggingface.co, such as "InternLM/internlm-chat-20b-4bit", "lmdeploy/llama2-chat-70b-4bit", etc. - iii) The model_id of a model hosted inside a model repo on huggingface.co, such as "internlm/internlm-chat-7b", "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" and so on. chat_template (str): needed when model is a pytorch model on huggingface.co, such as "internlm-chat-7b", "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on, and when the model name of local path did not match the original model name in HF. tp (int): tensor parallel prompt (Union[str, List[str]]): input texts to be completed. do_preprocess (bool): whether pre-process the messages. Default to True, which means chat_template will be applied. skip_special_tokens (bool): Whether or not to remove special tokens in the decoding. Default to be True. do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise. Default to be False, which means greedy decoding will be applied. """ try: import lmdeploy from lmdeploy import version_info, GenerationConfig except Exception: raise ImportError("Please install lmdeploy before intialize lmdeploy backend.") kwargs.pop("response_format", None) max_new_tokens = kwargs.pop("max_tokens", 512) tp = kwargs.pop("tp", 1) skip_special_tokens = kwargs.pop("skip_special_tokens", True) do_preprocess = kwargs.pop("do_preprocess", True) do_sample = kwargs.pop("do_sample", False) gen_params = kwargs version = version_info if do_sample is not None and version < (0, 6, 0): raise RuntimeError( "`do_sample` parameter is not supported by lmdeploy until " f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}" ) else: do_sample = True gen_params.update(do_sample=do_sample) lmdeploy_pipe = initialize_lmdeploy_pipeline( model=model, tp=tp, chat_template=chat_template, model_format=model_format, quant_policy=quant_policy, log_level="WARNING", ) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] gen_config = GenerationConfig( skip_special_tokens=skip_special_tokens, max_new_tokens=max_new_tokens, **gen_params, ) response = "" async for res in lmdeploy_pipe.generate( messages, gen_config=gen_config, do_preprocess=do_preprocess, stream_response=False, session_id=1, ): response += res.response if hashing_kv is not None: await hashing_kv.upsert({args_hash: {"return": response, "model": model}}) return response async def gpt_4o_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "gpt-4o", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def gpt_4o_mini_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "gpt-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def azure_openai_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await azure_openai_complete_if_cache( "conversation-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def bedrock_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await bedrock_complete_if_cache( "anthropic.claude-3-haiku-20240307-v1:0", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def hf_model_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: model_name = kwargs["hashing_kv"].global_config["llm_model_name"] return await hf_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def ollama_model_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: model_name = kwargs["hashing_kv"].global_config["llm_model_name"] return await ollama_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) @wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), ) async def openai_embedding( texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None, ) -> np.ndarray: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) response = await openai_async_client.embeddings.create( model=model, input=texts, encoding_format="float" ) return np.array([dp.embedding for dp in response.data]) @wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), ) async def azure_openai_embedding( texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None, ) -> np.ndarray: if api_key: os.environ["AZURE_OPENAI_API_KEY"] = api_key if base_url: os.environ["AZURE_OPENAI_ENDPOINT"] = base_url openai_async_client = AsyncAzureOpenAI( azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_API_KEY"), api_version=os.getenv("AZURE_OPENAI_API_VERSION"), ) response = await openai_async_client.embeddings.create( model=model, input=texts, encoding_format="float" ) return np.array([dp.embedding for dp in response.data]) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), ) async def siliconcloud_embedding( texts: list[str], model: str = "netease-youdao/bce-embedding-base_v1", base_url: str = "https://api.siliconflow.cn/v1/embeddings", max_token_size: int = 512, api_key: str = None, ) -> np.ndarray: if api_key and not api_key.startswith("Bearer "): api_key = "Bearer " + api_key headers = {"Authorization": api_key, "Content-Type": "application/json"} truncate_texts = [text[0:max_token_size] for text in texts] payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"} base64_strings = [] async with aiohttp.ClientSession() as session: async with session.post(base_url, headers=headers, json=payload) as response: content = await response.json() if "code" in content: raise ValueError(content) base64_strings = [item["embedding"] for item in content["data"]] embeddings = [] for string in base64_strings: decode_bytes = base64.b64decode(string) n = len(decode_bytes) // 4 float_array = struct.unpack("<" + "f" * n, decode_bytes) embeddings.append(float_array) return np.array(embeddings) # @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192) # @retry( # stop=stop_after_attempt(3), # wait=wait_exponential(multiplier=1, min=4, max=10), # retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions # ) async def bedrock_embedding( texts: list[str], model: str = "amazon.titan-embed-text-v2:0", aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, ) -> np.ndarray: os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( "AWS_ACCESS_KEY_ID", aws_access_key_id ) os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( "AWS_SECRET_ACCESS_KEY", aws_secret_access_key ) os.environ["AWS_SESSION_TOKEN"] = os.environ.get( "AWS_SESSION_TOKEN", aws_session_token ) session = aioboto3.Session() async with session.client("bedrock-runtime") as bedrock_async_client: if (model_provider := model.split(".")[0]) == "amazon": embed_texts = [] for text in texts: if "v2" in model: body = json.dumps( { "inputText": text, # 'dimensions': embedding_dim, "embeddingTypes": ["float"], } ) elif "v1" in model: body = json.dumps({"inputText": text}) else: raise ValueError(f"Model {model} is not supported!") response = await bedrock_async_client.invoke_model( modelId=model, body=body, accept="application/json", contentType="application/json", ) response_body = await response.get("body").json() embed_texts.append(response_body["embedding"]) elif model_provider == "cohere": body = json.dumps( {"texts": texts, "input_type": "search_document", "truncate": "NONE"} ) response = await bedrock_async_client.invoke_model( model=model, body=body, accept="application/json", contentType="application/json", ) response_body = json.loads(response.get("body").read()) embed_texts = response_body["embeddings"] else: raise ValueError(f"Model provider '{model_provider}' is not supported!") return np.array(embed_texts) async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray: device = next(embed_model.parameters()).device input_ids = tokenizer( texts, return_tensors="pt", padding=True, truncation=True ).input_ids.to(device) with torch.no_grad(): outputs = embed_model(input_ids) embeddings = outputs.last_hidden_state.mean(dim=1) if embeddings.dtype == torch.bfloat16: return embeddings.detach().to(torch.float32).cpu().numpy() else: return embeddings.detach().cpu().numpy() async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray: embed_text = [] ollama_client = ollama.Client(**kwargs) for text in texts: data = ollama_client.embeddings(model=embed_model, prompt=text) embed_text.append(data["embedding"]) return embed_text class Model(BaseModel): """ This is a Pydantic model class named 'Model' that is used to define a custom language model. Attributes: gen_func (Callable[[Any], str]): A callable function that generates the response from the language model. The function should take any argument and return a string. kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function. This could include parameters such as the model name, API key, etc. Example usage: Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}) In this example, 'openai_complete_if_cache' is the callable function that generates the response from the OpenAI model. The 'kwargs' dictionary contains the model name and API key to be passed to the function. """ gen_func: Callable[[Any], str] = Field( ..., description="A function that generates the response from the llm. The response must be a string", ) kwargs: Dict[str, Any] = Field( ..., description="The arguments to pass to the callable function. Eg. the api key, model name, etc", ) class Config: arbitrary_types_allowed = True class MultiModel: """ Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier. Could also be used for spliting across diffrent models or providers. Attributes: models (List[Model]): A list of language models to be used. Usage example: ```python models = [ Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_2"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_3"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_4"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_5"]}), ] multi_model = MultiModel(models) rag = LightRAG( llm_model_func=multi_model.llm_model_func / ..other args ) ``` """ def __init__(self, models: List[Model]): self._models = models self._current_model = 0 def _next_model(self): self._current_model = (self._current_model + 1) % len(self._models) return self._models[self._current_model] async def llm_model_func( self, prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: kwargs.pop("model", None) # stop from overwriting the custom model name next_model = self._next_model() args = dict( prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, **next_model.kwargs, ) return await next_model.gen_func(**args) if __name__ == "__main__": import asyncio async def main(): result = await gpt_4o_mini_complete("How are you?") print(result) asyncio.run(main())