{ "cells": [ { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['date', 'target', 'cpim_lag1', 'cpim_lag2', 'cpim_lag3', 'cpih_lag1',\n", " 'cpih_lag2', 'cpih_lag3', 'APC_Finished_Consultant',\n", " 'APC_FCEs_with_a_procedure', 'APC_Percent_FCEs_with_procedure',\n", " 'APC_Ordinary_Episodes', 'APC_Day_Case_Episodes',\n", " 'APC_Day_Case_Episodes_with_proc', 'APC_Percent_Day_Cases_with_proc',\n", " 'APC_Finished_Admission_Episodes', 'APC_Emergency',\n", " 'Outpatient_Total_Appointments', 'Outpatient_Attended_Appointments',\n", " 'Outpatient_Percent_Attended', 'Outpatient_DNA_Appointment',\n", " 'Outpatient_Percent_DNA', 'Outpatient_Follow_Up_Attendance',\n", " 'Outpatient_Attendance_Type_1', 'Outpatient_Attendance_Type_2'],\n", " dtype='object')\n" ] } ], "source": [ "from data_preprocessing import read_cpih, read_hes, get_global_df, get_final_df\n", "cpih_df = read_cpih(\"data/cpih.csv\", medical=False)\n", "cpim_df = read_cpih(\"data/cpih_medical.csv\", medical=True)\n", "hes = read_hes(\"data/HES_M5_OPEN_DATA.csv\")\n", "df = get_global_df(cpih_df, cpim_df, hes)\n", "df = get_final_df(df)\n", "print(df.columns)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "# Ensure the 'date' column is a datetime type and set it as the index\n", "df['date'] = pd.to_datetime(df['date'])\n", "df = df.set_index('date')\n", "\n", "# Ensure the target column (e.g., 'target') is properly defined\n", "target = \"target\" # The column to forecast\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/var/folders/c7/tz9fbdy52kg7nrm3g0wp_tv00000gn/T/ipykernel_11497/3834418672.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpycaret\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime_series\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Initialize the PyCaret time series experiment\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m exp = setup(\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# Pass the data without the target column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtarget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# Pass the target column (series)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mfold\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# Number of cross-validation folds\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/pycaret/time_series/forecasting/functional.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(data, data_func, target, index, ignore_features, numeric_imputation_target, numeric_imputation_exogenous, transform_target, transform_exogenous, fe_target_rr, fe_exogenous, scale_target, scale_exogenous, fold_strategy, fold, fh, hyperparameter_split, seasonal_period, ignore_seasonality_test, sp_detection, max_sp_to_consider, remove_harmonics, harmonic_order_method, num_sps_to_use, seasonality_type, point_alpha, coverage, enforce_exogenous, n_jobs, use_gpu, custom_pipeline, html, session_id, system_log, log_experiment, experiment_name, log_plots, log_profile, log_data, verbose, profile, profile_kwargs, fig_kwargs)\u001b[0m\n\u001b[1;32m 586\u001b[0m \"\"\"\n\u001b[1;32m 587\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 588\u001b[0m \u001b[0mexp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_EXPERIMENT_CLASS\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 589\u001b[0m \u001b[0mset_current_experiment\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 590\u001b[0;31m return exp.setup(\n\u001b[0m\u001b[1;32m 591\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 592\u001b[0m \u001b[0mdata_func\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata_func\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/pycaret/time_series/forecasting/oop.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, data, data_func, target, index, ignore_features, numeric_imputation_target, numeric_imputation_exogenous, transform_target, transform_exogenous, scale_target, scale_exogenous, fe_target_rr, fe_exogenous, fold_strategy, fold, fh, hyperparameter_split, seasonal_period, ignore_seasonality_test, sp_detection, max_sp_to_consider, remove_harmonics, harmonic_order_method, num_sps_to_use, seasonality_type, point_alpha, coverage, enforce_exogenous, n_jobs, use_gpu, custom_pipeline, html, session_id, system_log, log_experiment, experiment_name, experiment_custom_tags, log_plots, log_profile, log_data, engine, verbose, profile, profile_kwargs, fig_kwargs)\u001b[0m\n\u001b[1;32m 2104\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverbose\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2105\u001b[0m )\n\u001b[1;32m 2106\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0m_check_clean_and_set_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2107\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0m_check_and_clean_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseasonal_period\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseasonal_period\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2108\u001b[0;31m \u001b[0;34m.\u001b[0m\u001b[0m_check_and_set_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2109\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0m_set_exogenous_names\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2110\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0m_check_and_set_forecasting_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2111\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0m_check_and_set_fh\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfh\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/pycaret/time_series/forecasting/oop.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, target)\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0mtarget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 455\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mtarget\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_list\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 456\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Target Column '{target}' is not present in the data.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 458\u001b[0m \u001b[0;31m# Check type of target values - must be numeric ----\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1517\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mfinal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1518\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__nonzero__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mNoReturn\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1519\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 1520\u001b[0m \u001b[0;34mf\"The truth value of a {type(self).__name__} is ambiguous. \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1521\u001b[0m \u001b[0;34m\"Use a.empty, a.bool(), a.item(), a.any() or a.all().\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1522\u001b[0m )\n", "\u001b[0;31mValueError\u001b[0m: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()." ] } ], "source": [ "from pycaret.time_series import *\n", "\n", "# Initialize the PyCaret time series experiment\n", "exp = setup(\n", " data=df, # Pass the data without the target column\n", " target = df[target], # Pass the target column (series)\n", " fold=5, # Number of cross-validation folds\n", " session_id=42, # For reproducibility\n", " seasonal_period=12, # If you know the seasonal period, set it\n", " fh=24, # Forecast horizon (number of future periods to predict)\n", ")\n", "\n", "# Compare baseline models\n", "best_model = compare_models()\n", "\n", "# Get predictions from the best model\n", "final_model = finalize_model(best_model)\n", "future_forecast = predict_model(final_model, fh=24) # Forecast next 24 periods\n", "print(future_forecast)\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from data_preprocessing import read_cpih, read_hes, get_global_df, get_final_df\n", "cpih_df = read_cpih(\"data/cpih.csv\", medical=False)\n", "cpim_df = read_cpih(\"data/cpih_medical.csv\", medical=True)\n", "hes = read_hes(\"data/HES_M5_OPEN_DATA.csv\")\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | date | \n", "value | \n", "
---|---|---|
217 | \n", "2007-02-01 | \n", "2.7 | \n", "
218 | \n", "2007-03-01 | \n", "2.9 | \n", "
219 | \n", "2007-04-01 | \n", "2.7 | \n", "
220 | \n", "2007-05-01 | \n", "2.5 | \n", "
221 | \n", "2007-06-01 | \n", "2.5 | \n", "
... | \n", "... | \n", "... | \n", "
424 | \n", "2024-05-01 | \n", "2.8 | \n", "
425 | \n", "2024-06-01 | \n", "2.8 | \n", "
426 | \n", "2024-07-01 | \n", "3.1 | \n", "
427 | \n", "2024-08-01 | \n", "3.1 | \n", "
428 | \n", "2024-09-01 | \n", "2.6 | \n", "
212 rows × 2 columns
\n", "\n", " | cpih | \n", "cpih_medical | \n", "APC_Finished_Consultant | \n", "APC_FCEs_with_a_procedure | \n", "APC_Percent_FCEs_with_procedure | \n", "APC_Ordinary_Episodes | \n", "APC_Day_Case_Episodes | \n", "APC_Day_Case_Episodes_with_proc | \n", "APC_Percent_Day_Cases_with_proc | \n", "APC_Finished_Admission_Episodes | \n", "... | \n", "Outpatient_Total_Appointments | \n", "Outpatient_Attended_Appointments | \n", "Outpatient_Percent_Attended | \n", "Outpatient_DNA_Appointment | \n", "Outpatient_Percent_DNA | \n", "Outpatient_Follow_Up_Attendance | \n", "Outpatient_Attendance_Type_1 | \n", "Outpatient_Attendance_Type_2 | \n", "year | \n", "month | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "2.7 | \n", "4.8 | \n", "1194041 | \n", "650418 | \n", "0.54 | \n", "839651 | \n", "354390 | \n", "324717 | \n", "0.92 | \n", "1045931 | \n", "... | \n", "5098043 | \n", "4160949 | \n", "0.80 | \n", "427315 | \n", "0.10 | \n", "2.371069 | \n", "1232231 | \n", "2921705 | \n", "2007 | \n", "4 | \n", "
1 | \n", "2.5 | \n", "4.6 | \n", "1307117 | \n", "730827 | \n", "0.56 | \n", "906009 | \n", "401108 | \n", "367953 | \n", "0.92 | \n", "1147940 | \n", "... | \n", "5614329 | \n", "4587402 | \n", "0.80 | \n", "469044 | \n", "0.10 | \n", "2.310308 | \n", "1383498 | \n", "3196307 | \n", "2007 | \n", "5 | \n", "
2 | \n", "2.5 | \n", "4.9 | \n", "1266654 | \n", "715102 | \n", "0.56 | \n", "876009 | \n", "390645 | \n", "359944 | \n", "0.92 | \n", "1111356 | \n", "... | \n", "5497138 | \n", "4482970 | \n", "0.80 | \n", "465544 | \n", "0.10 | \n", "2.284555 | \n", "1362691 | \n", "3113143 | \n", "2007 | \n", "6 | \n", "
3 | \n", "2.0 | \n", "5.1 | \n", "1301280 | \n", "732105 | \n", "0.56 | \n", "898108 | \n", "403172 | \n", "371585 | \n", "0.92 | \n", "1141788 | \n", "... | \n", "5743307 | \n", "4657427 | \n", "0.80 | \n", "476312 | \n", "0.10 | \n", "2.276147 | \n", "1419227 | \n", "3230369 | \n", "2007 | \n", "7 | \n", "
4 | \n", "2.0 | \n", "5.0 | \n", "1274667 | \n", "719457 | \n", "0.56 | \n", "884214 | \n", "390453 | \n", "360565 | \n", "0.92 | \n", "1116986 | \n", "... | \n", "5475792 | \n", "4437888 | \n", "0.80 | \n", "459439 | \n", "0.10 | \n", "2.256872 | \n", "1360489 | \n", "3070449 | \n", "2007 | \n", "8 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
204 | \n", "3.0 | \n", "6.5 | \n", "1851865 | \n", "1102909 | \n", "0.60 | \n", "1149797 | \n", "702068 | \n", "655541 | \n", "0.93 | \n", "1516960 | \n", "... | \n", "11749634 | \n", "9116287 | \n", "0.78 | \n", "665686 | \n", "0.06 | \n", "2.055222 | \n", "2983520 | \n", "6131796 | \n", "2024 | \n", "4 | \n", "
205 | \n", "2.8 | \n", "6.0 | \n", "1912840 | \n", "1132815 | \n", "0.59 | \n", "1189323 | \n", "723517 | \n", "674431 | \n", "0.93 | \n", "1571634 | \n", "... | \n", "11955525 | \n", "9307137 | \n", "0.78 | \n", "682957 | \n", "0.06 | \n", "2.026724 | \n", "3074579 | \n", "6231324 | \n", "2024 | \n", "5 | \n", "
206 | \n", "2.8 | \n", "6.0 | \n", "1803082 | \n", "1060176 | \n", "0.59 | \n", "1126624 | \n", "676458 | \n", "628675 | \n", "0.93 | \n", "1479951 | \n", "... | \n", "11345191 | \n", "8754674 | \n", "0.77 | \n", "651037 | \n", "0.06 | \n", "2.002177 | \n", "2915717 | \n", "5837782 | \n", "2024 | \n", "6 | \n", "
207 | \n", "3.1 | \n", "6.0 | \n", "1924755 | \n", "1115065 | \n", "0.58 | \n", "1183777 | \n", "740978 | \n", "682257 | \n", "0.92 | \n", "1579131 | \n", "... | \n", "12447345 | \n", "9557550 | \n", "0.77 | \n", "714558 | \n", "0.06 | \n", "2.033782 | \n", "3149970 | \n", "6406353 | \n", "2024 | \n", "7 | \n", "
208 | \n", "3.1 | \n", "5.8 | \n", "1779709 | \n", "771329 | \n", "0.43 | \n", "1103475 | \n", "676234 | \n", "495560 | \n", "0.73 | \n", "1461354 | \n", "... | \n", "11016808 | \n", "8414975 | \n", "0.76 | \n", "636081 | \n", "0.06 | \n", "2.058246 | \n", "2751184 | \n", "5662614 | \n", "2024 | \n", "8 | \n", "
209 rows × 21 columns
\n", "\n", " | date | \n", "target | \n", "cpim_lag1 | \n", "cpim_lag2 | \n", "cpim_lag3 | \n", "cpih_lag1 | \n", "cpih_lag2 | \n", "cpih_lag3 | \n", "APC_Finished_Consultant | \n", "APC_FCEs_with_a_procedure | \n", "... | \n", "APC_Finished_Admission_Episodes | \n", "APC_Emergency | \n", "Outpatient_Total_Appointments | \n", "Outpatient_Attended_Appointments | \n", "Outpatient_Percent_Attended | \n", "Outpatient_DNA_Appointment | \n", "Outpatient_Percent_DNA | \n", "Outpatient_Follow_Up_Attendance | \n", "Outpatient_Attendance_Type_1 | \n", "Outpatient_Attendance_Type_2 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "2007-07-01 | \n", "5.1 | \n", "4.9 | \n", "4.6 | \n", "4.8 | \n", "2.5 | \n", "2.5 | \n", "2.7 | \n", "1266654.0 | \n", "715102.0 | \n", "... | \n", "1111356.0 | \n", "390411.0 | \n", "5497138.0 | \n", "4482970.0 | \n", "0.80 | \n", "465544.0 | \n", "0.10 | \n", "2.284555 | \n", "1362691.0 | \n", "3113143.0 | \n", "
1 | \n", "2007-08-01 | \n", "5.0 | \n", "5.1 | \n", "4.9 | \n", "4.6 | \n", "2.0 | \n", "2.5 | \n", "2.5 | \n", "1301280.0 | \n", "732105.0 | \n", "... | \n", "1141788.0 | \n", "397923.0 | \n", "5743307.0 | \n", "4657427.0 | \n", "0.80 | \n", "476312.0 | \n", "0.10 | \n", "2.276147 | \n", "1419227.0 | \n", "3230369.0 | \n", "
2 | \n", "2007-09-01 | \n", "5.2 | \n", "5.0 | \n", "5.1 | \n", "4.9 | \n", "2.0 | \n", "2.0 | \n", "2.5 | \n", "1274667.0 | \n", "719457.0 | \n", "... | \n", "1116986.0 | \n", "391334.0 | \n", "5475792.0 | \n", "4437888.0 | \n", "0.80 | \n", "459439.0 | \n", "0.10 | \n", "2.256872 | \n", "1360489.0 | \n", "3070449.0 | \n", "
3 | \n", "2007-10-01 | \n", "4.9 | \n", "5.2 | \n", "5.0 | \n", "5.1 | \n", "2.0 | \n", "2.0 | \n", "2.0 | \n", "1225860.0 | \n", "691203.0 | \n", "... | \n", "1079019.0 | \n", "376896.0 | \n", "5438116.0 | \n", "4401026.0 | \n", "0.80 | \n", "460482.0 | \n", "0.10 | \n", "2.245415 | \n", "1353967.0 | \n", "3040218.0 | \n", "
4 | \n", "2007-11-01 | \n", "4.7 | \n", "4.9 | \n", "5.2 | \n", "5.0 | \n", "2.3 | \n", "2.0 | \n", "2.0 | \n", "1354103.0 | \n", "769356.0 | \n", "... | \n", "1190762.0 | \n", "410475.0 | \n", "6144081.0 | \n", "5018526.0 | \n", "0.80 | \n", "522083.0 | \n", "0.10 | \n", "2.268299 | \n", "1533201.0 | \n", "3477759.0 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
201 | \n", "2024-04-01 | \n", "6.5 | \n", "5.9 | \n", "5.9 | \n", "6.1 | \n", "3.8 | \n", "3.8 | \n", "4.2 | \n", "1855318.0 | \n", "1071637.0 | \n", "... | \n", "1529117.0 | \n", "573401.0 | \n", "11176694.0 | \n", "8710477.0 | \n", "0.78 | \n", "625936.0 | \n", "0.06 | \n", "2.076817 | \n", "2833517.0 | \n", "5876176.0 | \n", "
202 | \n", "2024-05-01 | \n", "6.0 | \n", "6.5 | \n", "5.9 | \n", "5.9 | \n", "3.0 | \n", "3.8 | \n", "3.8 | \n", "1851865.0 | \n", "1102909.0 | \n", "... | \n", "1516960.0 | \n", "557776.0 | \n", "11749634.0 | \n", "9116287.0 | \n", "0.78 | \n", "665686.0 | \n", "0.06 | \n", "2.055222 | \n", "2983520.0 | \n", "6131796.0 | \n", "
203 | \n", "2024-06-01 | \n", "6.0 | \n", "6.0 | \n", "6.5 | \n", "5.9 | \n", "2.8 | \n", "3.0 | \n", "3.8 | \n", "1912840.0 | \n", "1132815.0 | \n", "... | \n", "1571634.0 | \n", "575755.0 | \n", "11955525.0 | \n", "9307137.0 | \n", "0.78 | \n", "682957.0 | \n", "0.06 | \n", "2.026724 | \n", "3074579.0 | \n", "6231324.0 | \n", "
204 | \n", "2024-07-01 | \n", "6.0 | \n", "6.0 | \n", "6.0 | \n", "6.5 | \n", "2.8 | \n", "2.8 | \n", "3.0 | \n", "1803082.0 | \n", "1060176.0 | \n", "... | \n", "1479951.0 | \n", "542409.0 | \n", "11345191.0 | \n", "8754674.0 | \n", "0.77 | \n", "651037.0 | \n", "0.06 | \n", "2.002177 | \n", "2915717.0 | \n", "5837782.0 | \n", "
205 | \n", "2024-08-01 | \n", "5.8 | \n", "6.0 | \n", "6.0 | \n", "6.0 | \n", "3.1 | \n", "2.8 | \n", "2.8 | \n", "1924755.0 | \n", "1115065.0 | \n", "... | \n", "1579131.0 | \n", "561228.0 | \n", "12447345.0 | \n", "9557550.0 | \n", "0.77 | \n", "714558.0 | \n", "0.06 | \n", "2.033782 | \n", "3149970.0 | \n", "6406353.0 | \n", "
206 rows × 25 columns
\n", "