Spaces:
Runtime error
Runtime error
macrdel
commited on
Commit
•
5da36ef
1
Parent(s):
8843bcd
Add sentiment pipeline
Browse files- app/api.py +3 -1
- app/src/src.py +58 -0
app/api.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
import config
|
|
|
|
|
|
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline
|
5 |
import uvicorn
|
|
|
|
|
1 |
import config
|
2 |
+
from src import pipeline_sentiment
|
3 |
+
|
4 |
+
from fastapi import FastAPI
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import pipeline
|
7 |
import uvicorn
|
app/src/src.py
CHANGED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import requests
|
3 |
+
import urllib.parse as urlparse
|
4 |
+
|
5 |
+
|
6 |
+
def get_video_id(url_video):
|
7 |
+
"""Get video id"""
|
8 |
+
query = urlparse.urlparse(url_video)
|
9 |
+
if query.hostname == 'youtu.be':
|
10 |
+
return query.path[1:]
|
11 |
+
if query.hostname in ('www.youtube.com', 'youtube.com'):
|
12 |
+
if query.path == '/watch':
|
13 |
+
return urlparse.parse_qs(query.query)["v"][0]
|
14 |
+
if query.path[:7] == '/embed/' or query.path[:3] == '/v/':
|
15 |
+
return query.path.split('/')[2]
|
16 |
+
return None
|
17 |
+
|
18 |
+
def get_comments(api_key, video_id):
|
19 |
+
"""Get comments"""
|
20 |
+
endpoint = "https://www.qoogleapis.com/youtube/v3/commentThreads"
|
21 |
+
params = {
|
22 |
+
"part":"snippet",
|
23 |
+
"videoId": video_id,
|
24 |
+
"maxResults": 100,
|
25 |
+
"key": api_key,
|
26 |
+
}
|
27 |
+
response = requests.get(endpoint, params=params)
|
28 |
+
res = response.json()
|
29 |
+
|
30 |
+
if "items" in res.keys():
|
31 |
+
return {
|
32 |
+
num: {
|
33 |
+
"test_comment": " ".join(
|
34 |
+
x["snippet"]["topLevelComment"]["snippet"][
|
35 |
+
"textOriginal"
|
36 |
+
].splitlines()
|
37 |
+
),
|
38 |
+
"publish_data": x["snippet"]["topLevelComment"]["snippet"][
|
39 |
+
"publishedAt"
|
40 |
+
],
|
41 |
+
}
|
42 |
+
for num, x in enumerate(res['items'])
|
43 |
+
}
|
44 |
+
|
45 |
+
def get_sentim(data, model):
|
46 |
+
"""Get result of sentimental analysis"""
|
47 |
+
res = model(data)[0]
|
48 |
+
return res['label'], res['score']
|
49 |
+
|
50 |
+
def pipeline_sentiment(url_video, api_key, model):
|
51 |
+
"""Pipeline of sentimental analysis"""
|
52 |
+
video_id = get_video_id(url_video)
|
53 |
+
comments = get_comments(api_key, video_id)
|
54 |
+
comments_df = pd.DataFrame(comments).T
|
55 |
+
|
56 |
+
text_tuple = [get_sentim(i, model) for i in comments_df["text_comment"]]
|
57 |
+
comments_df[["sentiment", "score"]] = pd.DataFrame(list(text_tuple))
|
58 |
+
return comments_df
|