Spaces:
Runtime error
Runtime error
File size: 7,549 Bytes
1f67d0f 191e77c 1f67d0f 191e77c 1f67d0f a2dcddd 1f67d0f 17bb6e0 191e77c 1f67d0f 17bb6e0 1f67d0f 191e77c 1f67d0f d60014f 1f67d0f 191e77c 1f67d0f 17bb6e0 191e77c 17bb6e0 191e77c 17bb6e0 191e77c 17bb6e0 191e77c 1f67d0f 191e77c 1f67d0f 17bb6e0 191e77c 1f67d0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Code adapted from: https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard/blob/main/app.py
import datetime
import os
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from dotenv import load_dotenv
from huggingface_hub import HfApi
import competitions
import utils
FONT = (
"""<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
)
TITLE = """<h1 align="center" id="space-title" class="typewriter">Finetuning Subnet Leaderboard</h1>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/macrocosm-os/finetuning" target="_blank">Finetuning</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing finetuned models in defined competitions. The model with the best head-to-head score in each competition receive a steady emission of TAO.</h3>"""
EVALUATION_HEADER = """<h3 align="center">Shows the latest per-competition evaluation statistics as calculated by the Taoverse validator</h3>"""
HF_REPO_ID = "macrocosm-os/finetuning-leaderboard"
SECONDS_PER_BLOCK = 12
load_dotenv()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API = HfApi(token=HF_TOKEN)
def get_next_update_div(current_block: int, next_update_block: int) -> str:
now = datetime.datetime.now()
blocks_to_go = next_update_block - current_block
next_update_time = now + datetime.timedelta(
seconds=blocks_to_go * SECONDS_PER_BLOCK
)
delta = next_update_time - now
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
def get_last_updated_div() -> str:
return f"""<div>Last Updated: {datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>"""
def restart_space():
API.restart_space(repo_id=HF_REPO_ID, token=HF_TOKEN)
def main():
# To avoid leaderboard failures, infinitely try until we get all data
# needed to populate the dashboard
state_vars = utils.load_state_vars()
model_data = state_vars["model_data"]
vali_runs = state_vars["vali_runs"]
scores = state_vars["scores"]
validator_df = state_vars["validator_df"]
benchmarks = state_vars.get("benchmarks", None)
benchmark_timestamp = state_vars.get("benchmark_timestamp", None)
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
gr.HTML(FONT)
gr.HTML(TITLE)
gr.HTML(HEADER)
gr.Label(
label="Emissions",
value={
f"{c.namespace}/{c.name} ({c.commit[0:8]}) · (τ{round(c.emission, 2):,})": c.incentive
for c in model_data
if c.incentive
},
num_top_classes=10,
)
if benchmarks is not None:
with gr.Accordion("Top Model Benchmarks"):
gr.components.Dataframe(benchmarks)
gr.HTML("""<div>PPL computed using a stride of 512. See <a href='https://github.com/macrocosm-os/finetuning/blob/dev/scripts/run_benchmarks.py'>here</a> for the full code.</div>""")
gr.HTML(f"""<div>Last Updated: {benchmark_timestamp.strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>""")
with gr.Accordion("Competition Results"):
gr.HTML(EVALUATION_HEADER)
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
competition_leaderboards = []
losses_1 = utils.get_losses_over_time(vali_runs, 1)
comp_1 = competitions.COMPETITION_DETAILS[1]
with gr.Accordion(f"{comp_1.name} Competition"):
gr.HTML(comp_1.html_description)
competition_leaderboards.append(gr.components.Dataframe(
value=utils.leaderboard_data(model_data, scores, 1, show_stale.value),
headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"],
datatype=["markdown", "number", "number", "number", "number", "number"],
elem_id="comp1-table",
interactive=False,
visible=True,
))
gr.LinePlot(
losses_1,
x="timestamp",
x_title="Date",
y="losses",
y_title="Average Loss",
interactive=True,
visible=True,
width=1024,
title="Best Average Loss Over Time",
)
comp_2 = competitions.COMPETITION_DETAILS[2]
losses_2 = utils.get_losses_over_time(vali_runs, 2)
# Covert the losses into % of correct answers.
losses_2["losses"] = losses_2["losses"].apply(lambda x: 1 - x if x else None)
with gr.Accordion(f"{comp_2.name} Competition"):
gr.HTML(comp_2.html_description)
competition_leaderboards.append(gr.components.Dataframe(
value=utils.leaderboard_data(model_data, scores, 2, show_stale.value),
headers=["Name", "Win Rate", "MC Score", "Weight", "UID", "Block"],
datatype=["markdown", "number", "number", "number", "number", "number"],
elem_id="comp2-table",
interactive=False,
visible=True,
))
gr.LinePlot(
losses_2,
x="timestamp",
x_title="Date",
y="losses",
y_title="MC Score",
interactive=True,
visible=True,
width=1024,
title="Best MC Score Over Time",
)
gr.HTML("""
<ul><li><b>Name:</b> the 🤗 Hugging Face repo (click to go to the model card)</li>
<li><b>Win Rate:</b> % of head-to-head evals won vs. other eval'd models, given an epsilon advantage or disadvantage</li>
<li><b>Average Loss:</b> the last loss value on the evaluation data for the model as calculated by the OTF validator (lower is better)</li>
<li><b>MC Score:</b> the % of correct multiple choice answers given by the model as calculated by the OTF validator (higher is better)</li>
<li><b>UID:</b> the Bittensor UID of the miner</li>
<li><b>Weight:</b> the bittensor weight set for this model</li>
<li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-37/" target="_blank">taostats</a>.""")
show_stale.change(
lambda stale: [utils.leaderboard_data(model_data, scores, 1, stale), utils.leaderboard_data(model_data, scores, 2, stale)],
inputs=[show_stale],
outputs=competition_leaderboards,
)
with gr.Accordion("Validator Stats"):
gr.components.Dataframe(
utils.make_validator_dataframe(validator_df, model_data),
interactive=False,
visible=True,
)
gr.HTML(value=get_last_updated_div())
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space, "interval", seconds=60 * 30
) # restart every 15 minutes
scheduler.start()
demo.launch()
main()
|