Spaces:
Runtime error
Runtime error
File size: 6,302 Bytes
1f67d0f 17bb6e0 1f67d0f a2dcddd 1f67d0f 17bb6e0 d60014f 1f67d0f 17bb6e0 1f67d0f 17bb6e0 1f67d0f d60014f 1f67d0f 17bb6e0 a2dcddd 17bb6e0 1f67d0f 17bb6e0 1f67d0f a2dcddd 1f67d0f a2dcddd 1f67d0f a2dcddd 1f67d0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Code adapted from: https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard/blob/main/app.py
import os
import datetime
from typing import Dict
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
import competitions
import utils
FONT = (
"""<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
)
TITLE = """<h1 align="center" id="space-title" class="typewriter">Finetuning Subnet Leaderboard</h1>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/macrocosm-os/finetuning" target="_blank">Finetuning</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing finetuned models in defined competitions. The model with the best head-to-head score in each competition receive a steady emission of TAO.</h3>"""
EVALUATION_DETAILS = """<ul><li><b>Name:</b> the 🤗 Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-37/" target="_blank">taostats</a>."""
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
HF_REPO_ID = "macrocosm-os/finetuning-leaderboard"
SECONDS_PER_BLOCK = 12
load_dotenv()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API = HfApi(token=HF_TOKEN)
def get_next_update_div(current_block: int, next_update_block: int) -> str:
now = datetime.datetime.now()
blocks_to_go = next_update_block - current_block
next_update_time = now + datetime.timedelta(
seconds=blocks_to_go * SECONDS_PER_BLOCK
)
delta = next_update_time - now
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
def get_last_updated_div() -> str:
return f"""<div>Last Updated: {datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>"""
def restart_space():
API.restart_space(repo_id=HF_REPO_ID, token=HF_TOKEN)
def main():
# To avoid leaderboard failures, infinitely try until we get all data
# needed to populate the dashboard
state_vars = utils.load_state_vars()
model_data = state_vars["model_data"]
vali_runs = state_vars["vali_runs"]
scores = state_vars["scores"]
validator_df = state_vars["validator_df"]
benchmarks = state_vars.get("benchmarks", None)
benchmark_timestamp = state_vars.get("benchmark_timestamp", None)
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
gr.HTML(FONT)
gr.HTML(TITLE)
gr.HTML(HEADER)
# TODO: Re-enable once ""SubtensorModule.BlocksSinceEpoch" not found" issue is resolved.
# gr.HTML(value=get_next_update_div(current_block, next_epoch_block))
# TODO: Figure out the best approach to showing the per competition rewards.
gr.Label(
value={
f"{c.namespace}/{c.name} ({c.commit[0:8]}) · (τ{round(c.emission, 2):,})": c.incentive
for c in model_data
if c.incentive
},
num_top_classes=10,
)
if benchmarks is not None:
with gr.Accordion("Top Model Benchmarks"):
gr.components.Dataframe(benchmarks)
gr.HTML("""<div>PPL computed using a stride of 512. See <a href='https://github.com/macrocosm-os/finetuning/blob/dev/scripts/run_benchmarks.py'>here</a> for the full code.</div>""")
gr.HTML(f"""<div>Last Updated: {benchmark_timestamp.strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>""")
with gr.Accordion("Evaluation Stats"):
gr.HTML(EVALUATION_HEADER)
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
competition_leaderboards = []
# TODO: Dynamically generate per-competition leaderboards based on model_data.
competition_details = competitions.COMPETITION_DETAILS[1]
with gr.Accordion(f"{competition_details.name} competition"):
gr.HTML(competition_details.html_description)
competition_leaderboards.append(gr.components.Dataframe(
value=utils.leaderboard_data(model_data, scores, show_stale.value),
headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"],
datatype=["markdown", "number", "number", "number", "number", "number"],
elem_id="leaderboard-table",
interactive=False,
visible=True,
))
gr.HTML(EVALUATION_DETAILS)
show_stale.change(
lambda stale: utils.leaderboard_data(model_data, scores, stale),
inputs=[show_stale],
outputs=competition_leaderboards,
)
# TODO: Make this a multi-competition line plot
gr.LinePlot(
utils.get_losses_over_time(vali_runs),
x="timestamp",
x_title="Date",
y="SN9_MODEL",
y_title="Average Loss",
tooltip="SN9_MODEL",
interactive=True,
visible=True,
width=1024,
title="Best Average Loss Over Time",
)
with gr.Accordion("Validator Stats"):
gr.components.Dataframe(
utils.make_validator_dataframe(validator_df, model_data),
interactive=False,
visible=True,
)
gr.HTML(value=get_last_updated_div())
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space, "interval", seconds=60 * 30
) # restart every 15 minutes
scheduler.start()
demo.launch()
main()
|