Spaces:
Runtime error
Runtime error
Added app code from RaoFoundation's
Browse files
app.py
CHANGED
@@ -1,7 +1,440 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return name
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code adapted from: https://huggingface.co/spaces/RaoFoundation/pretraining-leaderboard/blob/main/app.py
|
2 |
+
import argparse
|
3 |
+
import functools
|
4 |
+
import traceback
|
5 |
import gradio as gr
|
6 |
+
import bittensor as bt
|
7 |
+
from typing import Dict, List, Any, Optional, Tuple
|
8 |
+
from bittensor.extrinsics.serving import get_metadata
|
9 |
+
from dataclasses import dataclass
|
10 |
+
import wandb
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import datetime
|
14 |
+
import time
|
15 |
+
import json
|
16 |
+
import pandas as pd
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
from huggingface_hub import HfApi
|
19 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
20 |
+
import pandas as pd
|
21 |
|
22 |
+
load_dotenv()
|
|
|
23 |
|
24 |
+
FONT = (
|
25 |
+
"""<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
|
26 |
+
)
|
27 |
+
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 9 Leaderboard</h1>"""
|
28 |
+
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/macrocosm-os/pretraining" target="_blank">Subnet 9</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing pretrained Foundation-Models on the <a href="https://huggingface.co/datasets/tiiuae/falcon-refinedweb" target="_blank">Falcon Refined Web dataset</a>. It acts like a continuous benchmark whereby miners are rewarded for attaining the best losses on randomly sampled pages of Falcon.<br/>The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
|
29 |
+
EVALUATION_DETAILS = """<ul><li><b>Name:</b> the 🤗 Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-9/" target="_blank">taostats</a>."""
|
30 |
+
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
|
31 |
+
VALIDATOR_WANDB_PROJECT = "opentensor-dev/pretraining-subnet"
|
32 |
+
BENCHMARK_WANDB_PROJECT = "raofoundation/pretraining-leaderboard-data"
|
33 |
+
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
34 |
+
API = HfApi(token=H4_TOKEN)
|
35 |
+
WANDB_TOKEN = os.environ.get("WANDB_API_KEY", None)
|
36 |
+
SUBTENSOR_ENDPOINT=os.environ.get("SUBTENSOR_ENDPOINT", None)
|
37 |
+
REPO_ID = "RaoFoundation/pretraining-leaderboard"
|
38 |
+
MAX_AVG_LOSS_POINTS = 1
|
39 |
+
RETRIES = 5
|
40 |
+
DELAY_SECS = 3
|
41 |
+
NETUID = 9
|
42 |
+
SECONDS_PER_BLOCK = 12
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class ModelData:
|
47 |
+
uid: int
|
48 |
+
hotkey: str
|
49 |
+
namespace: str
|
50 |
+
name: str
|
51 |
+
commit: str
|
52 |
+
hash: str
|
53 |
+
block: int
|
54 |
+
incentive: float
|
55 |
+
emission: float
|
56 |
+
|
57 |
+
@classmethod
|
58 |
+
def from_compressed_str(
|
59 |
+
cls,
|
60 |
+
uid: int,
|
61 |
+
hotkey: str,
|
62 |
+
cs: str,
|
63 |
+
block: int,
|
64 |
+
incentive: float,
|
65 |
+
emission: float,
|
66 |
+
):
|
67 |
+
"""Returns an instance of this class from a compressed string representation"""
|
68 |
+
tokens = cs.split(":")
|
69 |
+
return ModelData(
|
70 |
+
uid=uid,
|
71 |
+
hotkey=hotkey,
|
72 |
+
namespace=tokens[0],
|
73 |
+
name=tokens[1],
|
74 |
+
commit=tokens[2] if tokens[2] != "None" else None,
|
75 |
+
hash=tokens[3] if tokens[3] != "None" else None,
|
76 |
+
block=block,
|
77 |
+
incentive=incentive,
|
78 |
+
emission=emission,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def run_with_retries(func, *args, **kwargs):
|
83 |
+
for i in range(0, RETRIES):
|
84 |
+
try:
|
85 |
+
return func(*args, **kwargs)
|
86 |
+
except (Exception, RuntimeError):
|
87 |
+
if i == RETRIES - 1:
|
88 |
+
raise
|
89 |
+
time.sleep(DELAY_SECS)
|
90 |
+
raise RuntimeError("Should never happen")
|
91 |
+
|
92 |
+
|
93 |
+
def get_subtensor_and_metagraph() -> Tuple[bt.subtensor, bt.metagraph]:
|
94 |
+
def _internal() -> Tuple[bt.subtensor, bt.metagraph]:
|
95 |
+
if SUBTENSOR_ENDPOINT:
|
96 |
+
parser = argparse.ArgumentParser()
|
97 |
+
bt.subtensor.add_args(parser)
|
98 |
+
subtensor = bt.subtensor(config=bt.config(parser=parser, args=["--subtensor.chain_endpoint", SUBTENSOR_ENDPOINT]))
|
99 |
+
else:
|
100 |
+
subtensor = bt.subtensor("finney")
|
101 |
+
metagraph = subtensor.metagraph(NETUID, lite=False)
|
102 |
+
return subtensor, metagraph
|
103 |
+
|
104 |
+
return run_with_retries(_internal)
|
105 |
+
|
106 |
+
|
107 |
+
def get_validator_weights(
|
108 |
+
metagraph: bt.metagraph,
|
109 |
+
) -> Dict[int, Tuple[float, int, Dict[int, float]]]:
|
110 |
+
"""Returns a dictionary of validator UIDs to (vtrust, stake, {uid: weight})."""
|
111 |
+
ret = {}
|
112 |
+
for uid in metagraph.uids.tolist():
|
113 |
+
vtrust = metagraph.validator_trust[uid].item()
|
114 |
+
if vtrust > 0:
|
115 |
+
ret[uid] = (vtrust, metagraph.S[uid].item(), {})
|
116 |
+
for ouid in metagraph.uids.tolist():
|
117 |
+
if ouid == uid:
|
118 |
+
continue
|
119 |
+
weight = round(metagraph.weights[uid][ouid].item(), 4)
|
120 |
+
if weight > 0:
|
121 |
+
ret[uid][-1][ouid] = weight
|
122 |
+
return ret
|
123 |
+
|
124 |
+
|
125 |
+
def get_subnet_data(
|
126 |
+
subtensor: bt.subtensor, metagraph: bt.metagraph
|
127 |
+
) -> List[ModelData]:
|
128 |
+
result = []
|
129 |
+
for uid in metagraph.uids.tolist():
|
130 |
+
hotkey = metagraph.hotkeys[uid]
|
131 |
+
metadata = None
|
132 |
+
try:
|
133 |
+
metadata = run_with_retries(
|
134 |
+
functools.partial(get_metadata, subtensor, metagraph.netuid, hotkey)
|
135 |
+
)
|
136 |
+
except:
|
137 |
+
print(f"Failed to get metadata for UID {uid}: {traceback.format_exc()}")
|
138 |
+
|
139 |
+
if not metadata:
|
140 |
+
continue
|
141 |
+
|
142 |
+
commitment = metadata["info"]["fields"][0]
|
143 |
+
hex_data = commitment[list(commitment.keys())[0]][2:]
|
144 |
+
chain_str = bytes.fromhex(hex_data).decode()
|
145 |
+
block = metadata["block"]
|
146 |
+
incentive = metagraph.incentive[uid].nan_to_num().item()
|
147 |
+
emission = (
|
148 |
+
metagraph.emission[uid].nan_to_num().item() * 20
|
149 |
+
) # convert to daily TAO
|
150 |
+
|
151 |
+
model_data = None
|
152 |
+
try:
|
153 |
+
model_data = ModelData.from_compressed_str(
|
154 |
+
uid, hotkey, chain_str, block, incentive, emission
|
155 |
+
)
|
156 |
+
except:
|
157 |
+
continue
|
158 |
+
|
159 |
+
result.append(model_data)
|
160 |
+
return result
|
161 |
+
|
162 |
+
|
163 |
+
def is_floatable(x) -> bool:
|
164 |
+
return (
|
165 |
+
isinstance(x, float) and not math.isnan(x) and not math.isinf(x)
|
166 |
+
) or isinstance(x, int)
|
167 |
+
|
168 |
+
|
169 |
+
def get_wandb_runs(project: str, filters: Dict[str, Any]) -> List:
|
170 |
+
"""Get the latest runs from Wandb, retrying infinitely until we get them."""
|
171 |
+
while True:
|
172 |
+
api = wandb.Api(api_key=WANDB_TOKEN)
|
173 |
+
runs = list(
|
174 |
+
api.runs(
|
175 |
+
project,
|
176 |
+
filters=filters,
|
177 |
+
)
|
178 |
+
)
|
179 |
+
if len(runs) > 0:
|
180 |
+
return runs
|
181 |
+
# WandDB API is quite unreliable. Wait another minute and try again.
|
182 |
+
print("Failed to get runs from Wandb. Trying again in 60 seconds.")
|
183 |
+
time.sleep(60)
|
184 |
+
|
185 |
+
|
186 |
+
def get_scores(
|
187 |
+
uids: List[int],
|
188 |
+
wandb_runs: List,
|
189 |
+
) -> Dict[int, Dict[str, Optional[float]]]:
|
190 |
+
result = {}
|
191 |
+
previous_timestamp = None
|
192 |
+
# Iterate through the runs until we've processed all the uids.
|
193 |
+
for i, run in enumerate(wandb_runs):
|
194 |
+
if not "original_format_json" in run.summary:
|
195 |
+
continue
|
196 |
+
data = json.loads(run.summary["original_format_json"])
|
197 |
+
all_uid_data = data["uid_data"]
|
198 |
+
timestamp = data["timestamp"]
|
199 |
+
|
200 |
+
# Make sure runs are indeed in descending time order.
|
201 |
+
assert (
|
202 |
+
previous_timestamp is None or timestamp < previous_timestamp
|
203 |
+
), f"Timestamps are not in descending order: {timestamp} >= {previous_timestamp}"
|
204 |
+
previous_timestamp = timestamp
|
205 |
+
|
206 |
+
for uid in uids:
|
207 |
+
if uid in result:
|
208 |
+
continue
|
209 |
+
if str(uid) in all_uid_data:
|
210 |
+
uid_data = all_uid_data[str(uid)]
|
211 |
+
# Only the most recent run is fresh.
|
212 |
+
is_fresh = i == 0
|
213 |
+
result[uid] = {
|
214 |
+
"avg_loss": uid_data.get("average_loss", None),
|
215 |
+
"win_rate": uid_data.get("win_rate", None),
|
216 |
+
"win_total": uid_data.get("win_total", None),
|
217 |
+
"weight": uid_data.get("weight", None),
|
218 |
+
"fresh": is_fresh,
|
219 |
+
}
|
220 |
+
if len(result) == len(uids):
|
221 |
+
break
|
222 |
+
return result
|
223 |
+
|
224 |
+
|
225 |
+
def get_losses_over_time(wandb_runs: List) -> pd.DataFrame:
|
226 |
+
"""Returns a dataframe of the best average model loss over time."""
|
227 |
+
timestamps = []
|
228 |
+
best_losses = []
|
229 |
+
|
230 |
+
for run in wandb_runs:
|
231 |
+
if "original_format_json" not in run.summary:
|
232 |
+
continue
|
233 |
+
data = json.loads(run.summary["original_format_json"])
|
234 |
+
all_uid_data = data["uid_data"]
|
235 |
+
timestamp = datetime.datetime.fromtimestamp(data["timestamp"])
|
236 |
+
best_loss = math.inf
|
237 |
+
for _, uid_data in all_uid_data.items():
|
238 |
+
loss = uid_data.get("average_loss", math.inf)
|
239 |
+
# Filter out the numbers from the exploit and when validators lost the best model.
|
240 |
+
if loss < best_loss and (loss > 2.5 or timestamp > datetime.datetime(2024,2,12)) and (loss < 5 or timestamp > datetime.datetime(2024,3,27)):
|
241 |
+
best_loss = uid_data["average_loss"]
|
242 |
+
if best_loss != math.inf:
|
243 |
+
timestamps.append(timestamp)
|
244 |
+
best_losses.append(best_loss)
|
245 |
+
|
246 |
+
return pd.DataFrame({"timestamp": timestamps, "best_loss": best_losses})
|
247 |
+
|
248 |
+
|
249 |
+
def format_score(uid: int, scores, key) -> Optional[float]:
|
250 |
+
if uid in scores:
|
251 |
+
if key in scores[uid]:
|
252 |
+
point = scores[uid][key]
|
253 |
+
if is_floatable(point):
|
254 |
+
return round(scores[uid][key], 4)
|
255 |
+
return None
|
256 |
+
|
257 |
+
|
258 |
+
def next_epoch(subtensor: bt.subtensor, block: int) -> int:
|
259 |
+
return (
|
260 |
+
block
|
261 |
+
+ subtensor.get_subnet_hyperparameters(NETUID).tempo
|
262 |
+
- subtensor.blocks_since_epoch(NETUID, block)
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
def get_next_update_div(current_block: int, next_update_block: int) -> str:
|
267 |
+
now = datetime.datetime.now()
|
268 |
+
blocks_to_go = next_update_block - current_block
|
269 |
+
next_update_time = now + datetime.timedelta(
|
270 |
+
seconds=blocks_to_go * SECONDS_PER_BLOCK
|
271 |
+
)
|
272 |
+
delta = next_update_time - now
|
273 |
+
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
|
274 |
+
|
275 |
+
|
276 |
+
def get_last_updated_div() -> str:
|
277 |
+
return f"""<div>Last Updated: {datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>"""
|
278 |
+
|
279 |
+
|
280 |
+
def leaderboard_data(
|
281 |
+
leaderboard: List[ModelData],
|
282 |
+
scores: Dict[int, Dict[str, Optional[float]]],
|
283 |
+
show_stale: bool,
|
284 |
+
) -> List[List[Any]]:
|
285 |
+
"""Returns the leaderboard data, based on models data and UID scores."""
|
286 |
+
return [
|
287 |
+
[
|
288 |
+
f"[{c.namespace}/{c.name} ({c.commit[0:8]})](https://huggingface.co/{c.namespace}/{c.name}/commit/{c.commit})",
|
289 |
+
format_score(c.uid, scores, "win_rate"),
|
290 |
+
format_score(c.uid, scores, "avg_loss"),
|
291 |
+
format_score(c.uid, scores, "weight"),
|
292 |
+
c.uid,
|
293 |
+
c.block,
|
294 |
+
]
|
295 |
+
for c in leaderboard
|
296 |
+
if (c.uid in scores and scores[c.uid]["fresh"]) or show_stale
|
297 |
+
]
|
298 |
+
|
299 |
+
def get_benchmarks() -> Tuple[pd.DataFrame, datetime.datetime]:
|
300 |
+
"""Returns the latest benchmarks and the time they were run."""
|
301 |
+
runs = get_wandb_runs(project=BENCHMARK_WANDB_PROJECT, filters=None)
|
302 |
+
for run in runs:
|
303 |
+
artifacts = list(run.logged_artifacts())
|
304 |
+
if artifacts:
|
305 |
+
table = artifacts[-1].get("benchmarks")
|
306 |
+
if table:
|
307 |
+
return table.get_dataframe(), datetime.datetime.strptime(run.metadata["startedAt"], "%Y-%m-%dT%H:%M:%S.%f")
|
308 |
+
bt.logging.error("Failed to get benchmarks from Wandb.")
|
309 |
+
return None, None
|
310 |
+
|
311 |
+
|
312 |
+
def restart_space():
|
313 |
+
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
314 |
+
|
315 |
+
|
316 |
+
def main():
|
317 |
+
# To avoid leaderboard failures, infinitely try until we get all data
|
318 |
+
# needed to populate the dashboard
|
319 |
+
while True:
|
320 |
+
try:
|
321 |
+
subtensor, metagraph = get_subtensor_and_metagraph()
|
322 |
+
|
323 |
+
model_data: List[ModelData] = get_subnet_data(subtensor, metagraph)
|
324 |
+
model_data.sort(key=lambda x: x.incentive, reverse=True)
|
325 |
+
|
326 |
+
vali_runs = get_wandb_runs(project=VALIDATOR_WANDB_PROJECT, filters={"config.type": "validator", "config.uid": 238})
|
327 |
+
|
328 |
+
scores = get_scores([x.uid for x in model_data], vali_runs)
|
329 |
+
|
330 |
+
# TODO: Re-enable once ""SubtensorModule.BlocksSinceEpoch" not found" issue is resolved.
|
331 |
+
# current_block = metagraph.block.item()
|
332 |
+
# next_epoch_block = next_epoch(subtensor, current_block)
|
333 |
+
|
334 |
+
validator_df = get_validator_weights(metagraph)
|
335 |
+
weight_keys = set()
|
336 |
+
for uid, stats in validator_df.items():
|
337 |
+
weight_keys.update(stats[-1].keys())
|
338 |
+
|
339 |
+
benchmarks, benchmark_timestamp = get_benchmarks()
|
340 |
+
break
|
341 |
+
except Exception as e:
|
342 |
+
print(f"Failed to get data: {e}")
|
343 |
+
time.sleep(30)
|
344 |
+
|
345 |
+
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
|
346 |
+
with demo:
|
347 |
+
gr.HTML(FONT)
|
348 |
+
gr.HTML(TITLE)
|
349 |
+
gr.HTML(HEADER)
|
350 |
+
|
351 |
+
# TODO: Re-enable once ""SubtensorModule.BlocksSinceEpoch" not found" issue is resolved.
|
352 |
+
# gr.HTML(value=get_next_update_div(current_block, next_epoch_block))
|
353 |
+
|
354 |
+
gr.Label(
|
355 |
+
value={
|
356 |
+
f"{c.namespace}/{c.name} ({c.commit[0:8]}) · (τ{round(c.emission, 2):,})": c.incentive
|
357 |
+
for c in model_data
|
358 |
+
if c.incentive
|
359 |
+
},
|
360 |
+
num_top_classes=10,
|
361 |
+
)
|
362 |
+
|
363 |
+
if benchmarks is not None:
|
364 |
+
with gr.Accordion("Top Model Benchmarks"):
|
365 |
+
gr.components.Dataframe(benchmarks)
|
366 |
+
gr.HTML("""<div>PPL computed using a stride of 512. See <a href='https://github.com/RaoFoundation/pretraining/blob/dev/scripts/run_benchmarks.py'>here</a> for the full code.</div>""")
|
367 |
+
gr.HTML(f"""<div>Last Updated: {benchmark_timestamp.strftime("%Y-%m-%d %H:%M:%S")} (UTC)</div>""")
|
368 |
+
|
369 |
+
with gr.Accordion("Evaluation Stats"):
|
370 |
+
gr.HTML(EVALUATION_HEADER)
|
371 |
+
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
|
372 |
+
leaderboard_table = gr.components.Dataframe(
|
373 |
+
value=leaderboard_data(model_data, scores, show_stale.value),
|
374 |
+
headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"],
|
375 |
+
datatype=["markdown", "number", "number", "number", "number", "number"],
|
376 |
+
elem_id="leaderboard-table",
|
377 |
+
interactive=False,
|
378 |
+
visible=True,
|
379 |
+
)
|
380 |
+
gr.HTML(EVALUATION_DETAILS)
|
381 |
+
show_stale.change(
|
382 |
+
lambda stale: leaderboard_data(model_data, scores, stale),
|
383 |
+
inputs=[show_stale],
|
384 |
+
outputs=leaderboard_table,
|
385 |
+
)
|
386 |
+
|
387 |
+
gr.LinePlot(
|
388 |
+
get_losses_over_time(vali_runs),
|
389 |
+
x="timestamp",
|
390 |
+
x_title="Date",
|
391 |
+
y="best_loss",
|
392 |
+
y_title="Average Loss",
|
393 |
+
tooltip="best_loss",
|
394 |
+
interactive=True,
|
395 |
+
visible=True,
|
396 |
+
width=1024,
|
397 |
+
title="Best Average Loss Over Time",
|
398 |
+
)
|
399 |
+
|
400 |
+
with gr.Accordion("Validator Stats"):
|
401 |
+
gr.components.Dataframe(
|
402 |
+
value=[
|
403 |
+
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)]
|
404 |
+
+ [
|
405 |
+
validator_df[uid][-1].get(c.uid)
|
406 |
+
for c in model_data
|
407 |
+
if c.incentive
|
408 |
+
]
|
409 |
+
for uid, _ in sorted(
|
410 |
+
zip(
|
411 |
+
validator_df.keys(),
|
412 |
+
[validator_df[x][1] for x in validator_df.keys()],
|
413 |
+
),
|
414 |
+
key=lambda x: x[1],
|
415 |
+
reverse=True,
|
416 |
+
)
|
417 |
+
],
|
418 |
+
headers=["UID", "Stake (τ)", "V-Trust"]
|
419 |
+
+ [
|
420 |
+
f"{c.namespace}/{c.name} ({c.commit[0:8]})"
|
421 |
+
for c in model_data
|
422 |
+
if c.incentive
|
423 |
+
],
|
424 |
+
datatype=["number", "number", "number"]
|
425 |
+
+ ["number" for c in model_data if c.incentive],
|
426 |
+
interactive=False,
|
427 |
+
visible=True,
|
428 |
+
)
|
429 |
+
gr.HTML(value=get_last_updated_div())
|
430 |
+
|
431 |
+
scheduler = BackgroundScheduler()
|
432 |
+
scheduler.add_job(
|
433 |
+
restart_space, "interval", seconds=60 * 30
|
434 |
+
) # restart every 15 minutes
|
435 |
+
scheduler.start()
|
436 |
+
|
437 |
+
demo.launch()
|
438 |
+
|
439 |
+
|
440 |
+
main()
|