Spaces:
Sleeping
Sleeping
bkb2135
commited on
Commit
·
c6ce978
1
Parent(s):
c22f824
Clean up files and Syntax
Browse files- .gitattributes +0 -1
- assets/macrocosmos-black.png +0 -0
- assets/macrocosmos-white.png +0 -0
- test.py +0 -17
- utils.py +11 -10
.gitattributes
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
data/wandb/tzebw6rb.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
|
assets/macrocosmos-black.png
DELETED
Binary file (161 kB)
|
|
assets/macrocosmos-white.png
DELETED
Binary file (151 kB)
|
|
test.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
import pytest
|
2 |
-
|
3 |
-
|
4 |
-
def test_query_network():
|
5 |
-
pass
|
6 |
-
|
7 |
-
|
8 |
-
def test_filter_completions():
|
9 |
-
pass
|
10 |
-
|
11 |
-
|
12 |
-
def test_guess_task_name():
|
13 |
-
pass
|
14 |
-
|
15 |
-
|
16 |
-
def test_ensemble_completions():
|
17 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
@@ -52,12 +52,12 @@ EXTRACTORS = {
|
|
52 |
'created_at': lambda x: pd.Timestamp(x.created_at),
|
53 |
'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'),
|
54 |
|
55 |
-
'netuid': lambda x: x.config.get('netuid'),
|
56 |
-
'mock': lambda x: x.config.get('neuron').get('mock'),
|
57 |
-
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
|
58 |
-
'timeout': lambda x: x.config.get('neuron').get('timeout'),
|
59 |
-
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
|
60 |
-
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
|
61 |
|
62 |
# This stuff is from the last logged event
|
63 |
'num_steps': lambda x: x.summary.get('_step'),
|
@@ -176,8 +176,9 @@ def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=Tr
|
|
176 |
n_events += num_steps
|
177 |
prog_msg = f'Loading data {i/len(runs)*100:.0f}%, (total {n_events:,.0f} events)'
|
178 |
progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
|
|
|
|
|
179 |
|
180 |
-
run_data.append(run)
|
181 |
|
182 |
progress.empty()
|
183 |
|
@@ -249,7 +250,7 @@ def get_productivity(df_runs):
|
|
249 |
|
250 |
total_duration = df_runs.last_event_at.max() - df_runs.created_at.min()
|
251 |
total_steps = df_runs.num_steps.sum()
|
252 |
-
total_completions = (df_runs.num_steps*
|
253 |
total_completion_words = (df_runs.num_steps*df_runs.completion_words).sum()
|
254 |
total_completion_tokens = round(total_completion_words/0.75)
|
255 |
total_validator_words = (df_runs.num_steps*df_runs.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )).sum()
|
@@ -266,7 +267,7 @@ def get_productivity(df_runs):
|
|
266 |
}
|
267 |
|
268 |
@st.cache_data(show_spinner=False)
|
269 |
-
def get_reward_stats(df, exclude_multiturn=True, freq='
|
270 |
|
271 |
df = df.loc[df._timestamp.between(pd.Timestamp(date_min), pd.Timestamp(date_max))]
|
272 |
if exclude_multiturn:
|
@@ -378,7 +379,7 @@ def load_state_vars(username=USERNAME, percentile=0.95):
|
|
378 |
|
379 |
df_runs = build_data(time.time()//UPDATE_INTERVAL, use_cache=False)
|
380 |
|
381 |
-
df_runs = df_runs.loc[df_runs.netuid.isin([1,61,102])]
|
382 |
st.toast(f'Loaded {len(df_runs)} runs')
|
383 |
|
384 |
df_vali = df_runs.loc[df_runs.username == username]
|
|
|
52 |
'created_at': lambda x: pd.Timestamp(x.created_at),
|
53 |
'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'),
|
54 |
|
55 |
+
# 'netuid': lambda x: x.config.get('netuid'),
|
56 |
+
# 'mock': lambda x: x.config.get('neuron').get('mock'),
|
57 |
+
# 'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
|
58 |
+
# 'timeout': lambda x: x.config.get('neuron').get('timeout'),
|
59 |
+
# 'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
|
60 |
+
# 'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
|
61 |
|
62 |
# This stuff is from the last logged event
|
63 |
'num_steps': lambda x: x.summary.get('_step'),
|
|
|
176 |
n_events += num_steps
|
177 |
prog_msg = f'Loading data {i/len(runs)*100:.0f}%, (total {n_events:,.0f} events)'
|
178 |
progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
|
179 |
+
if 'netuid_1' in run.tags or 'netuid_61' in run.tags or 'netuid_102' in run.tags:
|
180 |
+
run_data.append(run)
|
181 |
|
|
|
182 |
|
183 |
progress.empty()
|
184 |
|
|
|
250 |
|
251 |
total_duration = df_runs.last_event_at.max() - df_runs.created_at.min()
|
252 |
total_steps = df_runs.num_steps.sum()
|
253 |
+
total_completions = (df_runs.num_steps*100).sum() #TODO: Parse from df
|
254 |
total_completion_words = (df_runs.num_steps*df_runs.completion_words).sum()
|
255 |
total_completion_tokens = round(total_completion_words/0.75)
|
256 |
total_validator_words = (df_runs.num_steps*df_runs.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )).sum()
|
|
|
267 |
}
|
268 |
|
269 |
@st.cache_data(show_spinner=False)
|
270 |
+
def get_reward_stats(df, exclude_multiturn=True, freq='D', remove_zero_rewards=True, agg='mean', date_min='2024-01-22', date_max='2024-08-12'): #TODO: Set the date_max to the current date
|
271 |
|
272 |
df = df.loc[df._timestamp.between(pd.Timestamp(date_min), pd.Timestamp(date_max))]
|
273 |
if exclude_multiturn:
|
|
|
379 |
|
380 |
df_runs = build_data(time.time()//UPDATE_INTERVAL, use_cache=False)
|
381 |
|
382 |
+
# df_runs = df_runs.loc[df_runs.netuid.isin([1,61,102])] # Now we filter for the netuid tag in build_data
|
383 |
st.toast(f'Loaded {len(df_runs)} runs')
|
384 |
|
385 |
df_vali = df_runs.loc[df_runs.username == username]
|