Spaces:
Sleeping
Sleeping
Copy utils from folding dashboard and update for prompting
Browse files
utils.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tqdm
|
| 3 |
+
import time
|
| 4 |
+
import wandb
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import bittensor as bt
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
|
| 11 |
+
# TODO: Store relevant wandb data in a database for faster access
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing
|
| 15 |
+
MAX_RUNS = 100#0000
|
| 16 |
+
NETUID = 1
|
| 17 |
+
BASE_PATH = 'macrocosmos/prompting-validators'
|
| 18 |
+
NETWORK = 'finney'
|
| 19 |
+
KEYS = None
|
| 20 |
+
ABBREV_CHARS = 8
|
| 21 |
+
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
api = wandb.Api(timeout=600)
|
| 25 |
+
|
| 26 |
+
IDENTITIES = {
|
| 27 |
+
'5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor',
|
| 28 |
+
'5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats',
|
| 29 |
+
'5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry',
|
| 30 |
+
'5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru',
|
| 31 |
+
'5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21',
|
| 32 |
+
'5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator',
|
| 33 |
+
'5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura',
|
| 34 |
+
'5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor',
|
| 35 |
+
'5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex',
|
| 36 |
+
'5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures',
|
| 37 |
+
'5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo',
|
| 38 |
+
'5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet'
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
EXTRACTORS = {
|
| 42 |
+
'state': lambda x: x.state,
|
| 43 |
+
'run_id': lambda x: x.id,
|
| 44 |
+
'run_path': lambda x: os.path.join(BASE_PATH, x.id),
|
| 45 |
+
'user': lambda x: x.user.name[:16],
|
| 46 |
+
'username': lambda x: x.user.username[:16],
|
| 47 |
+
'created_at': lambda x: pd.Timestamp(x.created_at),
|
| 48 |
+
'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'),
|
| 49 |
+
|
| 50 |
+
'netuid': lambda x: x.config.get('netuid'),
|
| 51 |
+
'mock': lambda x: x.config.get('neuron').get('mock'),
|
| 52 |
+
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
|
| 53 |
+
'timeout': lambda x: x.config.get('neuron').get('timeout'),
|
| 54 |
+
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
|
| 55 |
+
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
|
| 56 |
+
|
| 57 |
+
# This stuff is from the last logged event
|
| 58 |
+
'num_steps': lambda x: x.summary.get('_step'),
|
| 59 |
+
'runtime': lambda x: x.summary.get('_runtime'),
|
| 60 |
+
'query': lambda x: x.summary.get('query'),
|
| 61 |
+
'challenge': lambda x: x.summary.get('challenge'),
|
| 62 |
+
'reference': lambda x: x.summary.get('reference'),
|
| 63 |
+
'completions': lambda x: x.summary.get('completions'),
|
| 64 |
+
|
| 65 |
+
'version': lambda x: x.tags[0],
|
| 66 |
+
'spec_version': lambda x: x.tags[1],
|
| 67 |
+
'vali_hotkey': lambda x: x.tags[2],
|
| 68 |
+
# 'tasks_selected': lambda x: x.tags[3:],
|
| 69 |
+
|
| 70 |
+
# System metrics
|
| 71 |
+
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
|
| 72 |
+
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
|
| 73 |
+
# Really slow stuff below
|
| 74 |
+
# 'started_at': lambda x: x.metadata.get('startedAt'),
|
| 75 |
+
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
|
| 76 |
+
# 'commit': lambda x: x.metadata.get('git').get('commit')
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def get_leaderboard(df, ntop=10, entity_choice='identity'):
|
| 81 |
+
|
| 82 |
+
df = df.loc[df.validator_permit==False]
|
| 83 |
+
df.index = range(df.shape[0])
|
| 84 |
+
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
|
| 85 |
+
|
| 86 |
+
@st.cache_data()
|
| 87 |
+
def get_metagraph(time):
|
| 88 |
+
print(f'Loading metagraph with time {time}')
|
| 89 |
+
subtensor = bt.subtensor(network=NETWORK)
|
| 90 |
+
m = subtensor.metagraph(netuid=NETUID)
|
| 91 |
+
meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update']
|
| 92 |
+
|
| 93 |
+
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
|
| 94 |
+
df_m['uid'] = range(m.n.item())
|
| 95 |
+
df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons))
|
| 96 |
+
df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons))
|
| 97 |
+
df_m['ip'] = list(map(lambda a: a.ip, m.axons))
|
| 98 |
+
df_m['port'] = list(map(lambda a: a.port, m.axons))
|
| 99 |
+
df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS]
|
| 100 |
+
df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS]
|
| 101 |
+
df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1)
|
| 102 |
+
return df_m
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
@st.cache_data()
|
| 106 |
+
def load_run(run_path, keys=KEYS):
|
| 107 |
+
|
| 108 |
+
print('Loading run:', run_path)
|
| 109 |
+
run = api.run(run_path)
|
| 110 |
+
df = pd.DataFrame(list(run.scan_history(keys=keys)))
|
| 111 |
+
for col in ['updated_at', 'created_at']:
|
| 112 |
+
if col in df.columns:
|
| 113 |
+
df[col] = pd.to_datetime(df[col])
|
| 114 |
+
print(f'+ Loaded {len(df)} records')
|
| 115 |
+
return df
|
| 116 |
+
|
| 117 |
+
@st.cache_data(show_spinner=False)
|
| 118 |
+
def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
|
| 119 |
+
|
| 120 |
+
save_path = '_saved_runs.csv'
|
| 121 |
+
filters = {}
|
| 122 |
+
df = pd.DataFrame()
|
| 123 |
+
# Load the last saved runs so that we only need to update the new ones
|
| 124 |
+
if use_cache and os.path.exists(save_path):
|
| 125 |
+
df = pd.read_csv(save_path)
|
| 126 |
+
df['created_at'] = pd.to_datetime(df['created_at'])
|
| 127 |
+
df['last_event_at'] = pd.to_datetime(df['last_event_at'])
|
| 128 |
+
|
| 129 |
+
timestamp_str = df['last_event_at'].max().isoformat()
|
| 130 |
+
filters.update({'updated_at': {'$gte': timestamp_str}})
|
| 131 |
+
|
| 132 |
+
progress = st.progress(0, text='Loading data')
|
| 133 |
+
|
| 134 |
+
runs = api.runs(path, filters=filters)
|
| 135 |
+
|
| 136 |
+
run_data = []
|
| 137 |
+
n_events = 0
|
| 138 |
+
for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))):
|
| 139 |
+
num_steps = run.summary.get('_step',0)
|
| 140 |
+
if num_steps<min_steps:
|
| 141 |
+
continue
|
| 142 |
+
n_events += num_steps
|
| 143 |
+
prog_msg = f'Loading data {i/len(runs)*100:.0f}%, {n_events:,.0f} events)'
|
| 144 |
+
progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
|
| 145 |
+
|
| 146 |
+
run_data.append(run)
|
| 147 |
+
|
| 148 |
+
progress.empty()
|
| 149 |
+
|
| 150 |
+
df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))])
|
| 151 |
+
df = pd.concat([df, df_new], ignore_index=True)
|
| 152 |
+
df['duration'] = (df.last_event_at - df.created_at).round('s')
|
| 153 |
+
df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
|
| 154 |
+
df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
|
| 155 |
+
|
| 156 |
+
df.to_csv(save_path, index=False)
|
| 157 |
+
return df
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def load_state_vars():
|
| 161 |
+
UPDATE_INTERVAL = 600
|
| 162 |
+
|
| 163 |
+
df = build_data(time.time()//UPDATE_INTERVAL)
|
| 164 |
+
runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
|
| 165 |
+
df_24h = df.loc[runs_alive_24h_ago]
|
| 166 |
+
|
| 167 |
+
df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
|
| 168 |
+
|
| 169 |
+
return {
|
| 170 |
+
'dataframe': df,
|
| 171 |
+
'dataframe_24h': df_24h,
|
| 172 |
+
'metagraph': df_m,
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
if __name__ == '__main__':
|
| 177 |
+
|
| 178 |
+
print('Loading runs')
|
| 179 |
+
df = load_runs()
|
| 180 |
+
|
| 181 |
+
df.to_csv('test_wandb_data.csv', index=False)
|
| 182 |
+
print(df)
|