import os import tqdm import time import glob import wandb from traceback import print_exc import streamlit as st import pandas as pd import bittensor as bt import plotly.express as px # TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot # TODO: Store relevant wandb data in a database for faster access MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing NETUID = 1 BASE_PATH = 'macrocosmos/prompting-validators' NETWORK = 'finney' KEYS = ['_step','_timestamp','task','query','reference','challenge','topic','subtopic'] ABBREV_CHARS = 8 ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey') LOCAL_WANDB_PATH = './data/wandb' USERNAME = 'opentensor' api = wandb.Api(timeout=600) IDENTITIES = { '5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor', '5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats', '5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry', '5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru', '5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21', '5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator', '5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura', '5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor', '5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex', '5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures', '5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo', '5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet' } EXTRACTORS = { 'state': lambda x: x.state, 'run_id': lambda x: x.id, 'run_path': lambda x: os.path.join(BASE_PATH, x.id), 'user': lambda x: x.user.name[:16], 'username': lambda x: x.user.username[:16], 'created_at': lambda x: pd.Timestamp(x.created_at), 'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'), 'netuid': lambda x: x.config.get('netuid'), 'mock': lambda x: x.config.get('neuron').get('mock'), 'sample_size': lambda x: x.config.get('neuron').get('sample_size'), 'timeout': lambda x: x.config.get('neuron').get('timeout'), 'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'), 'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'), # This stuff is from the last logged event 'num_steps': lambda x: x.summary.get('_step'), 'runtime': lambda x: x.summary.get('_runtime'), 'query': lambda x: x.summary.get('query'), 'challenge': lambda x: x.summary.get('challenge'), 'reference': lambda x: x.summary.get('reference'), 'completions': lambda x: x.summary.get('completions'), 'version': lambda x: x.tags[0], 'spec_version': lambda x: x.tags[1], 'vali_hotkey': lambda x: x.tags[2], # 'tasks_selected': lambda x: x.tags[3:], # System metrics 'disk_read': lambda x: x.system_metrics.get('system.disk.in'), 'disk_write': lambda x: x.system_metrics.get('system.disk.out'), # Really slow stuff below # 'started_at': lambda x: x.metadata.get('startedAt'), # 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'), # 'commit': lambda x: x.metadata.get('git').get('commit') } def get_leaderboard(df, ntop=10, entity_choice='identity'): df = df.loc[df.validator_permit==False] df.index = range(df.shape[0]) return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop) @st.cache_data() def get_metagraph(time): print(f'Loading metagraph with time {time}') subtensor = bt.subtensor(network=NETWORK) m = subtensor.metagraph(netuid=NETUID) meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update'] df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols}) df_m['uid'] = range(m.n.item()) df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons)) df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons)) df_m['ip'] = list(map(lambda a: a.ip, m.axons)) df_m['port'] = list(map(lambda a: a.port, m.axons)) df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS] df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS] df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1) return df_m @st.cache_data(show_spinner=False) def load_downloaded_runs(time, cols=KEYS): list_cols = ['rewards','uids'] extra_cols = ['turn'] df_all = pd.DataFrame() progress = st.progress(0, text='Loading downloaded data') paths = glob.glob(os.path.join(LOCAL_WANDB_PATH,'*.parquet')) for i, path in enumerate(paths): run_id = path.split('/')[-1].split('.')[0] frame = pd.read_parquet(path).dropna(subset=cols) frame._timestamp = frame._timestamp.apply(pd.to_datetime, unit='s') # handle missing extra cols such as turn which depend on the version of the codebase found_extra_cols = [c for c in frame.columns if c in extra_cols] df_long = frame[cols+list_cols+found_extra_cols].explode(list_cols) prog_msg = f'Downloading data {i/len(paths)*100:.0f}%' progress.progress(i/len(paths), text=f'{prog_msg}... **downloading** `{run_id}`') df_all = pd.concat([df_all, df_long.assign(run_id=run_id)], ignore_index=True) progress.empty() # Ensure we have consistent naming schema for tasks task_mapping = { 'date-based question answering': 'date_qa', 'question-answering': 'qa', } df_all.task = df_all.task.apply(lambda x: task_mapping.get(x, x)) # Runs which do not have a turn field are imputed to be turn zero (single turn) df_all.turn.fillna(0, inplace=True) df_all.sort_values(by=['_timestamp'], inplace=True) return df_all @st.cache_data(show_spinner=False) def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True): save_path = '_saved_runs.csv' filters = {} df = pd.DataFrame() # Load the last saved runs so that we only need to update the new ones if use_cache and os.path.exists(save_path): df = pd.read_csv(save_path) df['created_at'] = pd.to_datetime(df['created_at']) df['last_event_at'] = pd.to_datetime(df['last_event_at']) timestamp_str = df['last_event_at'].max().isoformat() filters.update({'updated_at': {'$gte': timestamp_str}}) progress = st.progress(0, text='Loading data') runs = api.runs(path, filters=filters) run_data = [] n_events = 0 for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))): num_steps = run.summary.get('_step',0) if num_steps> Skipping {row.run_id!r} because file {save_path!r} already exists') continue try: pbar.set_description(f'* Downloading run {row.run_id!r}', flush=True) run = api.run(row.run_path) # By default we just download a subset of events (500 most recent) df = run.history() df.to_parquet(save_path) except KeyboardInterrupt: break except Exception as e: pbar.set_description(f'- Something went wrong with {row.run_id!r}: {print_exc()}\n') progress.empty() def get_productivity(df_runs): total_duration = df_runs.last_event_at.max() - df_runs.created_at.min() total_steps = df_runs.num_steps.sum() total_completions = (df_runs.num_steps*df_runs.sample_size).sum() total_completion_words = (df_runs.num_steps*df_runs.completion_words).sum() total_completion_tokens = round(total_completion_words/0.75) total_validator_words = (df_runs.num_steps*df_runs.apply(lambda x: len(str(x.query).split()) + len(str(x.challenge).split()) + len(str(x.reference).split()), axis=1 )).sum() total_validator_tokens = round(total_validator_words/0.75) total_dataset_tokens = total_completion_tokens + total_validator_tokens return { 'duration':total_duration, 'total_events':total_steps, 'total_completions':total_completions, 'total_completion_tokens':total_completion_tokens, 'total_validator_tokens':total_validator_tokens, 'total_tokens':total_dataset_tokens, } @st.cache_data(show_spinner=False) def get_reward_stats(df, exclude_multiturn=True, freq='1D', remove_zero_rewards=True, agg='mean', date_min='2024-01-22', date_max='2024-06-25'): df = df.loc[df._timestamp.between(pd.Timestamp(date_min), pd.Timestamp(date_max))] if exclude_multiturn: df = df.loc[df.turn == 0] if remove_zero_rewards: df = df.loc[df.rewards > 0] groups = ['run_id',pd.Grouper(key='_timestamp',freq=freq),'task'] return df.groupby(groups).agg({'rewards':agg, 'normalized_rewards':agg}) def get_release_dates(): release_dates = pd.DataFrame([ {'version': '1.0.0', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']}, {'version': '1.0.1', 'release_date': pd.Timestamp(month=1, day=22, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, {'version': '1.0.2', 'release_date': pd.Timestamp(month=1, day=24, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':['qa','summarization']}, {'version': '1.0.3', 'release_date': pd.Timestamp(month=2, day=14, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, {'version': '1.0.4', 'release_date': pd.Timestamp(month=2, day=15, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, {'version': '1.1.0', 'release_date': pd.Timestamp(month=2, day=21, year=2024), 'note': 'decay scores', 'model': 'zephyr', 'tasks_affected':['date_qa','math']}, {'version': '1.1.1', 'release_date': pd.Timestamp(month=2, day=28, year=2024), 'note': 'reduce penalty weight', 'model': 'zephyr', 'tasks_affected':['date_qa','qa','summarization']}, {'version': '1.1.2', 'release_date': pd.Timestamp(month=2, day=29, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, {'version': '1.1.3', 'release_date': pd.Timestamp(month=3, day=11, year=2024), 'note': '', 'model': 'zephyr', 'tasks_affected':[]}, {'version': '1.2.0', 'release_date': pd.Timestamp(month=3, day=19, year=2024), 'note': 'vllm', 'model': 'zephyr', 'tasks_affected':[]}, {'version': '1.3.0', 'release_date': pd.Timestamp(month=3, day=27, year=2024), 'note': '', 'model': 'solar', 'tasks_affected':['all','math']}, {'version': '2.0.0', 'release_date': pd.Timestamp(month=4, day=4, year=2024), 'note': 'streaming', 'model': 'solar', 'tasks_affected':['math','qa','summarization']}, {'version': '2.1.0', 'release_date': pd.Timestamp(month=4, day=18, year=2024), 'note': 'chattensor prompt', 'model': 'solar', 'tasks_affected':['generic']}, {'version': '2.2.0', 'release_date': pd.Timestamp(month=5, day=1, year=2024), 'note': 'multiturn + paraphrase', 'model': 'solar', 'tasks_affected':['sentiment','translation','math']}, {'version': '2.3.0', 'release_date': pd.Timestamp(month=5, day=20, year=2024), 'note': 'llama + freeform date', 'model': 'llama', 'tasks_affected':['all','date_qa']}, {'version': '2.3.1', 'release_date': pd.Timestamp(month=5, day=21, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':['date_qa']}, {'version': '2.4.0', 'release_date': pd.Timestamp(month=6, day=5, year=2024), 'note': 'streaming penalty', 'model': 'llama', 'tasks_affected':[]}, {'version': '2.4.1', 'release_date': pd.Timestamp(month=6, day=6, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]}, {'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]}, {'version': '2.4.2', 'release_date': pd.Timestamp(month=6, day=7, year=2024), 'note': '', 'model': 'llama', 'tasks_affected':[]}, {'version': '2.5.0', 'release_date': pd.Timestamp(month=6, day=18, year=2024), 'note': 'reduce multiturn', 'model': 'llama', 'tasks_affected':['translation','sentiment']}, {'version': '2.5.1', 'release_date': pd.Timestamp(month=6, day=25, year=2024), 'note': 'reduce timeout', 'model': 'llama', 'tasks_affected':[]}, ]) return release_dates def plot_reward_trends(df_stats, task='qa', window=14, col='normalized_reward', annotate=False, task_label='Question answering'): stats = df_stats.reset_index() release_dates = get_release_dates() stats_task = stats.loc[(stats.task == task)].sort_values(by='_timestamp') stats_task['rewards_ma'] = stats_task[col].rolling(window, min_periods=0).mean() fig = px.area(stats_task, x='_timestamp', y='rewards_ma', title=f'Reward Trend for {task_label} Task', labels={'rewards_ma': f'Rewards [{window} day avg.]','_timestamp':''}, width=800,height=600, ) if not annotate: return fig # Add annotations based on relevant releases for idx, row in release_dates.iterrows(): line_color = 'grey' if task in row['tasks_affected']: line_color='red' elif 'all' not in row['tasks_affected']: line_color='blue' # TODO add annotation or something fig.add_vline(row['release_date'], line_color=line_color, opacity=0.6, line_dash='dot', line_width=1)#, annotation_text=str(v)) return fig @st.cache_data() def get_task_counts(df_runs, df_events): # Get mapping from run id to prompting repo version run_to_version = df_runs.set_index('run_id').version.to_dict() df_events['version'] = df_events.run_id.map(run_to_version) def version_to_spec(version): major, minor, patch = version.split('.') return 10_000 * major + 100 * minor + patch def get_closest_prev_version(version, my_versions): ref_spec = version_to_spec(version) my_specs = list(map(version_to_spec, my_versions)) match = my_specs[0] for spec in my_specs[1:]: if spec>ref_spec: break match = spec return my_versions[my_specs.index(match)] # Now estimate the distribution of tasks for each version using the event data task_rate = df_events.groupby('version').task.value_counts(normalize=True).unstack().fillna(0) # Impute missing versions for v in sorted(df_runs.version.unique()): if v not in task_rate.index: prev_version = get_closest_prev_version(v, list(task_rate.index)) print(f'Imputing version {v} with task rate from closes previous version {prev_version!r}') task_rate.loc[v] = task_rate.loc[prev_version] # get esimated number of each task generated in every run using summary dataframe task_counts = df_runs.set_index('created_at').sort_index().apply(lambda x: round(task_rate.loc[x.version]*x.num_steps), axis=1).cumsum() return task_counts def load_state_vars(username=USERNAME, percentile=0.95): UPDATE_INTERVAL = 600 df_runs = build_data(time.time()//UPDATE_INTERVAL, use_cache=True) df_runs = df_runs.loc[df_runs.netuid.isin([1,61,102])] st.toast(f'Loaded {len(df_runs)} runs') df_vali = df_runs.loc[df_runs.username == username] download_runs(time.time()//UPDATE_INTERVAL, df_vali) df_events = load_downloaded_runs(time.time()//UPDATE_INTERVAL) df_events = normalize_rewards(df_events, percentile=percentile) yesterday = pd.Timestamp.now() - pd.Timedelta('1d') runs_alive_24h_ago = (df_runs.last_event_at > yesterday) df_runs_24h = df_runs.loc[runs_alive_24h_ago] # weight factor indicates the fraction of events that happened within the last 24 hour. fraction = 1 - (yesterday - df_runs_24h.created_at) / (pd.Timestamp.now()- df_runs_24h.created_at) df_runs_24h['fraction'] = fraction.clip(0,1) df_runs_24h['num_steps'] *= fraction.clip(0,1) df_task_counts = get_task_counts(df_runs, df_events) df_m = get_metagraph(time.time()//UPDATE_INTERVAL) return { 'df_runs': df_runs, 'df_runs_24h': df_runs_24h, 'df_vali': df_vali, 'df_events': df_events, 'metagraph': df_m, 'df_task_counts': df_task_counts } if __name__ == '__main__': pass