Spaces:
Paused
Paused
File size: 9,755 Bytes
7c740b1 dea3205 7c740b1 dea3205 7c740b1 3304383 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 3304383 dea3205 3304383 dea3205 3304383 7c740b1 dea3205 3304383 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 7c740b1 dea3205 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import time
import pandas as pd
import streamlit as st
from meta_utils import run_subprocess, load_metagraphs
# from opendashboards.assets import io, inspect, metric, plot
import meta_plotting as plotting
import asyncio
from functools import lru_cache
## TODO: Read blocks from a big parquet file instead of loading all the pickles -- this is slow
def get_or_create_eventloop():
try:
return asyncio.get_event_loop()
except RuntimeError as ex:
if "There is no current event loop in thread" in str(ex):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return asyncio.get_event_loop()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
import bittensor
netuid = 1
datadir=f'data/metagraph/{netuid}/'
blockfiles = sorted(int(filename.split('.')[0]) for filename in os.listdir(datadir) if filename.split('.')[0].isdigit())
DEFAULT_SRC = 'miner'
DEFAULT_BLOCK_START = blockfiles[0]
DEFAULT_BLOCK_END = blockfiles[-1]
DEFAULT_BLOCK_STEP = 1000
DEFAULT_NTOP = 10
DEFAULT_UID_NTOP = 10
# Set app config
st.set_page_config(
page_title='Validator Dashboard',
menu_items={
'Report a bug': "https://github.com/opentensor/dashboards/issues",
'About': """
This dashboard is part of the OpenTensor project. \n
"""
},
layout = "centered"
)
st.title('Metagraph :red[Analysis] Dashboard :eyes:')
# add vertical space
st.markdown('#')
st.markdown('#')
subtensor = bittensor.subtensor(network='finney')
current_block = subtensor.get_current_block()
@st.cache_data
def _metagraph(block, subnet):
print(f'rerunning cache with block {block}')
return (
subtensor.metagraph(subnet, block=block),
subtensor.metagraph(subnet, block=block - 7200),
subtensor.burn(netuid=subnet, block=block),
subtensor.burn(netuid=subnet, block=block - 7200),
)
current_metagraph, yesterday_metagraph, current_burn, yesterday_burn = _metagraph(10*(current_block//10), netuid)
current_validators = current_metagraph.validator_permit[current_metagraph.validator_trust > 0.0]
yesterday_validators = yesterday_metagraph.validator_permit[yesterday_metagraph.validator_trust > 0.0]
current_vcount = current_validators.sum().item()
current_mcount = (current_metagraph.trust > 0.0).sum().item()
yesterday_vcount = yesterday_validators.sum().item()
yesterday_mcount = (yesterday_metagraph.trust > 0.0).sum().item()
st.markdown('#')
mcol1, mcol2, mcol3, mcol4 = st.columns(4)
mcol1.metric('Block', current_block, delta='+7200 [24hr]')
mcol2.metric('Register Cost', f'{current_burn.unit}{current_burn.tao:.3f}', delta=f'{current_burn.tao-yesterday_burn.tao:.3f}')
mcol3.metric('Validators', current_vcount, delta=current_vcount-yesterday_vcount)
mcol4.metric('Miners', current_mcount, delta=current_mcount-yesterday_mcount)
st.markdown('#')
with st.sidebar:
st.title('Options')
st.markdown('#')
netuid = st.selectbox('Netuid', [1,11], index=0)
st.markdown('#')
c1, c2 = st.columns([0.7,0.3])
staleness = current_block - blockfiles[-1]
msg = c1.warning(f'Out of date ({staleness})') if staleness >= 100 else c1.info('Up to date')
if c2.button('Update', type='primary'):
msg.info('Downloading')
return_code = run_subprocess()
if return_code == 0:
msg.success('Up to date')
time.sleep(1)
msg.empty()
else:
msg.error('Error')
st.markdown('#')
block_start, block_end = st.select_slider(
'Select a **block range**',
options=blockfiles,
value=(DEFAULT_BLOCK_START, DEFAULT_BLOCK_END),
format_func=lambda x: f'{x:,}'
)
st.markdown('#')
st.markdown('#')
# horizontal line
st.markdown('<hr>', unsafe_allow_html=True)
r1c1, r1c2 = st.columns(2)
x = r1c1.selectbox('**Time axis**', ['block','timestamp'], index=0)
color = r1c2.selectbox('**Color**', ['coldkey','hotkey','ip'], index=0)
r2c1, r2c2 = st.columns(2)
ntop = r2c1.slider('**Sample top**', min_value=1, max_value=50, value=10, key='sel_ntop')
opacity = r2c2.slider('**Opacity**', min_value=0., max_value=1., value=0.5, key='opacity')
r3c1, r3c2 = st.columns(2)
smooth = r3c1.slider('Smoothing', min_value=1, max_value=100, value=1, key='sel_churn_smooth')
smooth_agg = r3c2.radio('Smooth Aggregation', ['mean','std','max','min','sum'], horizontal=True, index=0)
with st.spinner(text=f'Loading data...'):
# df = load_metagraphs(block_start=block_start, block_end=block_end, block_step=DEFAULT_BLOCK_STEP)
df = pd.read_parquet(os.path.join(datadir,'df.parquet'))
blocks = df.block.unique()
df_sel = df.loc[df.block.between(block_start, block_end)].sort_values(by='block')
miners = df_sel.loc[df_sel.validator_trust == 0]
validators = df_sel.loc[df_sel.validator_trust > 0]
# add vertical space
st.markdown('#')
st.markdown('#')
tab1, tab2, tab3, tab4 = st.tabs(["Overview", "Miners", "Validators", "Block"])
validator_choices = ['total_stake','incentive','emission','consensus','validator_trust','dividends']
miner_choices = ['total_stake','incentive','emission','consensus','trust']
cabal_choices = ['hotkey','ip','coldkey']
cabal_choices.remove(color)
### Overview ###
with tab1:
st.markdown('#')
st.markdown('#')
st.subheader('Hotkey Churn')
st.info('**Churn** *measures the change in network participants over time*')
churn_choice = st.radio('Hotkey event', ['changed','added','removed'], horizontal=True, index=0)
st.plotly_chart(
plotting.plot_churn(df_sel, time_col=x, type=churn_choice, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
st.markdown('#')
st.markdown('#')
st.subheader('Network Occupancy')
st.info('**Occupancy** *measures the number of network participants at a given time*')
st.plotly_chart(
plotting.plot_occupancy(df_sel, time_col=x, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
animation_aggs = ['mean','sum','std','max','min']
mac_choices = [f'{col}_{agg}' for col in miner_choices for agg in animation_aggs]+['hotkey_nunique','ip_nunique']
vac_choices = [f'{col}_{agg}' for col in validator_choices for agg in animation_aggs]+['hotkey_nunique','ip_nunique']
with tab2:
st.markdown('#')
st.markdown('#')
st.subheader('Miner Activity')
st.info('**Activity** *shows the change in stake and emission over time for **miners**, grouped by coldkey*')
mac1, mac2, mac3, mac4 = st.columns(4)
mac_x = mac1.selectbox('**x**', mac_choices, index=mac_choices.index('emission_mean'))
mac_y = mac2.selectbox('**y**', mac_choices, index=mac_choices.index('trust_mean'))
mac_size = mac3.selectbox('**marker size**', mac_choices, index=mac_choices.index('hotkey_nunique'))
mac_color = mac4.selectbox('**marker color**', mac_choices, index=mac_choices.index('total_stake_sum'))
st.plotly_chart(
plotting.plot_animation(miners, x=mac_x, y=mac_y, color=mac_color, size=mac_size, opacity=opacity),
use_container_width=True
)
miner_choice = st.radio('Select:', miner_choices, horizontal=True, index=0)
with st.expander(f'Show **{miner_choice}** trends for top **{ntop}** miners'):
st.plotly_chart(
plotting.plot_trace(miners, time_col=x, col=miner_choice, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
count_col = st.radio('Count', cabal_choices, index=0, horizontal=True, key='sel_miner_count')
with st.expander(f'Show **{count_col}** trends for top **{ntop}** miners'):
st.plotly_chart(
plotting.plot_cabals(miners, time_col=x, count_col=count_col, sel_col=color, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
with tab3:
st.markdown('#')
st.markdown('#')
st.subheader('Validator Activity')
st.info('**Activity** *shows the change in stake and emission over time for **validators**, grouped by coldkey*')
vac1, vac2, vac3, vac4 = st.columns(4)
vac_x = vac1.selectbox('**x**', vac_choices, index=vac_choices.index('incentive_mean'))
vac_y = vac2.selectbox('**y**', vac_choices, index=vac_choices.index('validator_trust_mean'))
vac_size = vac3.selectbox('**marker size**', vac_choices, index=vac_choices.index('hotkey_nunique'))
vac_color = vac4.selectbox('**marker color**', vac_choices, index=vac_choices.index('total_stake_sum'))
st.plotly_chart(
plotting.plot_animation(validators, x=vac_x, y=vac_y, color=vac_color, size=vac_size, opacity=opacity),
use_container_width=True
)
validator_choice = st.radio('Select:', validator_choices, horizontal=True, index=0)
with st.expander(f'Show **{validator_choice}** trends for top **{ntop}** validators'):
st.plotly_chart(
plotting.plot_trace(validators, time_col=x,col=validator_choice, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
count_col = st.radio('Count', cabal_choices, index=0, horizontal=True, key='sel_validator_count')
with st.expander(f'Show **{count_col}** trends for top **{ntop}** validators'):
st.plotly_chart(
plotting.plot_cabals(validators, time_col=x, count_col=count_col, sel_col=color, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
) |