Spaces:
Paused
Paused
File size: 14,710 Bytes
f98fb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# The MIT License (MIT)
# Copyright © 2021 Yuma Rao
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the “Software”), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import tqdm
import pandas as pd
import numpy as np
import networkx as nx
import plotly.express as px
import plotly.graph_objects as go
from typing import List, Union
plotly_config = {"width": 800, "height": 600, "template": "plotly_white"}
def plot_throughput(df: pd.DataFrame, n_minutes: int = 10) -> go.Figure:
"""Plot throughput of event log.
Args:
df (pd.DataFrame): Dataframe of event log.
n_minutes (int, optional): Number of minutes to aggregate. Defaults to 10.
"""
rate = df.resample(rule=f"{n_minutes}T", on="_timestamp").size()
return px.line(
x=rate.index, y=rate, title="Event Log Throughput", labels={"x": "", "y": f"Logs / {n_minutes} min"}, **plotly_config
)
def plot_weights(scores: pd.DataFrame, ntop: int = 20, uids: List[Union[str, int]] = None) -> go.Figure:
"""_summary_
Args:
scores (pd.DataFrame): Dataframe of scores. Should be indexed by timestamp and have one column per uid.
ntop (int, optional): Number of uids to plot. Defaults to 20.
uids (List[Union[str, int]], optional): List of uids to plot, should match column names. Defaults to None.
"""
# Select subset of columns for plotting
if uids is None:
uids = scores.columns[:ntop]
print(f"Using first {ntop} uids for plotting: {uids}")
return px.line(
scores, y=uids, title="Moving Averaged Scores", labels={"_timestamp": "", "value": "Score"}, **plotly_config
).update_traces(opacity=0.7)
def plot_uid_diversty(df: pd.DataFrame, remove_unsuccessful: bool = False) -> go.Figure:
"""Plot uid diversity as measured by ratio of unique to total completions.
Args:
df (pd.DataFrame): Dataframe of event log.
"""
uid_cols = ["followup_uids", "answer_uids"]
completion_cols = ["followup_completions", "answer_completions"]
reward_cols = ["followup_rewards", "answer_rewards"]
list_cols = uid_cols + completion_cols + reward_cols
df = df[list_cols].explode(column=list_cols)
if remove_unsuccessful:
# remove unsuccessful completions, as indicated by empty completions
for col in completion_cols:
df = df[df[col].str.len() > 0]
frames = []
for uid_col, completion_col, reward_col in zip(uid_cols, completion_cols, reward_cols):
frame = df.groupby(uid_col).agg({completion_col: ["nunique", "size"], reward_col: "mean"})
# flatten multiindex columns
frame.columns = ["_".join(col) for col in frame.columns]
frame["diversity"] = frame[f"{completion_col}_nunique"] / frame[f"{completion_col}_size"]
frames.append(frame)
merged = pd.merge(*frames, left_index=True, right_index=True, suffixes=("_followup", "_answer"))
merged["reward_mean"] = merged.filter(regex="rewards_mean").mean(axis=1)
merged.index.name = "UID"
merged.reset_index(inplace=True)
return px.scatter(
merged,
x="diversity_followup",
y="diversity_answer",
opacity=0.3,
size="followup_completions_size",
color="reward_mean",
hover_data=["UID"] + merged.columns.tolist(),
marginal_x="histogram",
marginal_y="histogram",
color_continuous_scale=px.colors.sequential.Bluered,
labels={"x": "Followup diversity", "y": "Answer diversity"},
title="Diversity of completions by UID",
**plotly_config,
)
def plot_completion_rates(
df: pd.DataFrame,
msg_col: str = "all_completions",
time_interval: str = "H",
time_col: str = "_timestamp",
ntop: int = 20,
completions: List[str] = None,
completion_regex: str = None,
) -> go.Figure:
"""Plot completion rates. Useful for identifying common completions and attacks.
Args:
df (pd.DataFrame): Dataframe of event log.
msg_col (str, optional): List-like column containing completions. Defaults to 'all_completions'.
time_interval (str, optional): Pandas time interval. Defaults to 'H'. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
time_col (str, optional): Column containing timestamps as pd.Datetime. Defaults to '_timestamp'.
ntop (int, optional): Number of completions to plot. Defaults to 20.
completions (List[str], optional): List of completions to plot. Defaults to None.
completion_regex (str, optional): Regex to match completions. Defaults to None.
"""
df = df[[time_col, msg_col]].explode(column=msg_col)
if completions is None:
completion_counts = df[msg_col].value_counts()
if completion_regex is not None:
completions = completion_counts[completion_counts.index.str.contains(completion_regex)].index[:ntop]
print(f"Using {len(completions)} completions which match {completion_regex!r}: \n{completions}")
else:
completions = completion_counts.index[:ntop]
print(f"Using top {len(completions)} completions: \n{completions}")
period = df[time_col].dt.to_period(time_interval)
counts = df.groupby([msg_col, period]).size()
top_counts = counts.loc[completions].reset_index().rename(columns={0: "Size"})
top_counts["Completion ID"] = top_counts[msg_col].map({k: f"{i}" for i, k in enumerate(completions, start=1)})
return px.line(
top_counts.astype({time_col: str}),
x=time_col,
y="Size",
color="Completion ID",
hover_data=[top_counts[msg_col].str.replace("\n", "<br>")],
labels={time_col: f"Time, {time_interval}", "Size": f"Occurrences / {time_interval}"},
title=f"Completion Rates for {len(completions)} Messages",
**plotly_config,
).update_traces(opacity=0.7)
def plot_completion_rewards(
df: pd.DataFrame,
msg_col: str = "followup_completions",
reward_col: str = "followup_rewards",
time_col: str = "_timestamp",
uid_col: str = "followup_uids",
ntop: int = 3,
completions: List[str] = None,
completion_regex: str = None,
) -> go.Figure:
"""Plot completion rewards. Useful for tracking common completions and their rewards.
Args:
df (pd.DataFrame): Dataframe of event log.
msg_col (str, optional): List-like column containing completions. Defaults to 'followup_completions'.
reward_col (str, optional): List-like column containing rewards. Defaults to 'followup_rewards'.
time_col (str, optional): Column containing timestamps as pd.Datetime. Defaults to '_timestamp'.
ntop (int, optional): Number of completions to plot. Defaults to 20.
completions (List[str], optional): List of completions to plot. Defaults to None.
completion_regex (str, optional): Regex to match completions. Defaults to None.
"""
df = (
df[[time_col, uid_col, msg_col, reward_col]]
.explode(column=[msg_col, uid_col, reward_col])
.rename(columns={uid_col: "UID"})
)
completion_counts = df[msg_col].value_counts()
if completions is None:
if completion_regex is not None:
completions = completion_counts[completion_counts.index.str.contains(completion_regex)].index[:ntop]
print(f"Using {len(completions)} completions which match {completion_regex!r}: \n{completions}")
else:
completions = completion_counts.index[:ntop]
print(f"Using top {len(completions)} completions: \n{completions}")
# Get ranks of completions in terms of number of occurrences
ranks = completion_counts.rank(method="dense", ascending=False).loc[completions].astype(int)
# Filter to only the selected completions
df = df.loc[df[msg_col].isin(completions)]
df["rank"] = df[msg_col].map(ranks).astype(str)
df["Total"] = df[msg_col].map(completion_counts)
return px.scatter(
df,
x=time_col,
y=reward_col,
color="rank",
hover_data=[msg_col, "UID", "Total"],
category_orders={"rank": sorted(df["rank"].unique())},
marginal_x="histogram",
marginal_y="violin",
labels={"rank": "Rank", reward_col: "Reward", time_col: ""},
title=f"Rewards for {len(completions)} Messages",
**plotly_config,
opacity=0.3,
)
def plot_leaderboard(
df: pd.DataFrame,
group_on: str = "answer_uids",
agg_col: str = "answer_rewards",
agg: str = "mean",
ntop: int = 10,
alias: bool = False,
) -> go.Figure:
"""Plot leaderboard for a given column. By default plots the top 10 UIDs by mean reward.
Args:
df (pd.DataFrame): Dataframe of event log.
group_on (str, optional): Entities to use for grouping. Defaults to 'answer_uids'.
agg_col (str, optional): Column to aggregate. Defaults to 'answer_rewards'.
agg (str, optional): Aggregation function. Defaults to 'mean'.
ntop (int, optional): Number of entities to plot. Defaults to 10.
alias (bool, optional): Whether to use aliases for indices. Defaults to False.
"""
df = df[[group_on, agg_col]].explode(column=[group_on, agg_col])
rankings = df.groupby(group_on)[agg_col].agg(agg).sort_values(ascending=False).head(ntop)
if alias:
index = rankings.index.map({name: str(i) for i, name in enumerate(rankings.index)})
else:
index = rankings.index.astype(str)
return px.bar(
x=rankings,
y=index,
color=rankings,
orientation="h",
labels={"x": f"{agg_col.title()}", "y": group_on, "color": ""},
title=f"Leaderboard for {agg_col}, top {ntop} {group_on}",
color_continuous_scale="BlueRed",
opacity=0.5,
hover_data=[rankings.index.astype(str)],
**plotly_config,
)
def plot_dendrite_rates(
df: pd.DataFrame, uid_col: str = "answer_uids", reward_col: str = "answer_rewards", ntop: int = 20, uids: List[int] = None
) -> go.Figure:
"""Makes a bar chart of the success rate of dendrite calls for a given set of uids.
Args:
df (pd.DataFrame): Dataframe of event log.
uid_col (str, optional): Column containing uids. Defaults to 'answer_uids'.
reward_col (str, optional): Column containing rewards. Defaults to 'answer_rewards'.
ntop (int, optional): Number of uids to plot. Defaults to 20.
uids (List[int], optional): List of uids to plot. Defaults to None.
"""
df = df[[uid_col, reward_col]].explode(column=[uid_col, reward_col]).rename(columns={uid_col: "UID"})
df["success"] = df[reward_col] != 0
if uids is None:
uids = df["UID"].value_counts().head(ntop).index
df = df.loc[df["UID"].isin(uids)]
# get total and successful dendrite calls
rates = df.groupby("UID").success.agg(["sum", "count"]).rename(columns={"sum": "Success", "count": "Total"})
rates = rates.melt(ignore_index=False).reset_index()
return px.bar(
rates.astype({"UID": str}),
x="value",
y="UID",
color="variable",
labels={"value": "Number of Calls", "variable": ""},
barmode="group",
title="Dendrite Calls by UID",
color_continuous_scale="Blues",
opacity=0.5,
**plotly_config,
)
def plot_network_embedding(
df: pd.DataFrame,
uid_col: str = "followup_uids",
completion_col: str = "followup_completions",
ntop: int = 1,
uids: List[int] = None,
) -> go.Figure:
"""Plots a network embedding of the most common completions for a given set of uids.
Args:
df (pd.DataFrame): Dataframe of event log.
uid_col (str, optional): Column containing uids. Defaults to 'answer_uids'.
completion_col (str, optional): Column containing completions. Defaults to 'followup_completions'.
ntop (int, optional): Number of uids to plot. Defaults to 20.
hover_data (List[str], optional): Columns to include in hover data. Defaults to None.
uids (List[int], optional): List of uids to plot. Defaults to None.
# TODO: use value counts to use weighted similarity instead of a simple set intersection
"""
top_completions = {}
df = df[[uid_col, completion_col]].explode(column=[uid_col, completion_col])
if uids is None:
uids = df[uid_col].unique()
# loop over UIDs and compute ntop most common completions
for uid in tqdm.tqdm(uids, unit="UID"):
c = df.loc[df[uid_col] == uid, completion_col].value_counts()
top_completions[uid] = set(c.index[:ntop])
a = np.zeros((len(uids), len(uids)))
# now compute similarity matrix as a set intersection
for i, uid in enumerate(uids):
for j, uid2 in enumerate(uids[i + 1 :], start=i + 1):
a[i, j] = a[j, i] = len(top_completions[uid].intersection(top_completions[uid2])) / ntop
# make a graph from the similarity matrix
g = nx.from_numpy_array(a)
z = pd.DataFrame(nx.spring_layout(g)).T.rename(columns={0: "x", 1: "y"})
z["UID"] = uids
z["top_completions"] = pd.Series(top_completions).apply(list)
# assign groups based on cliques (fully connected subgraphs)
cliques = {
uids[cc]: f"Group-{i}" if len(c) > 1 else "Other" for i, c in enumerate(nx.find_cliques(g), start=1) for cc in c
}
z["Group"] = z["UID"].map(cliques)
return px.scatter(
z.reset_index(),
x="x",
y="y",
color="Group",
title=f"Graph for Top {ntop} Completion Similarities",
color_continuous_scale="BlueRed",
hover_data=["UID", "top_completions"],
opacity=0.5,
**plotly_config,
)
|