File size: 9,462 Bytes
f98fb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39972c9
f98fb68
 
 
39972c9
 
f98fb68
 
 
 
 
39972c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c32e5a
f98fb68
 
 
 
 
 
 
 
 
 
5c32e5a
1212161
f98fb68
 
 
 
 
 
 
 
5c32e5a
f98fb68
 
 
 
 
 
 
 
 
5c32e5a
1212161
f98fb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e60235b
f98fb68
 
 
 
 
 
 
39972c9
f98fb68
 
 
 
 
 
 
 
 
39972c9
f98fb68
 
39972c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98fb68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e60235b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# The MIT License (MIT)
# Copyright © 2021 Yuma Rao

# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the “Software”), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.

# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

import os
import re
import tqdm
import wandb
import pandas as pd

from traceback import format_exc
from pandas.api.types import is_list_like

from typing import List, Dict, Any, Union


def pull_wandb_runs(project='openvalidators', filters=None, min_steps=50, ntop=10, summary_filters=None ):
    all_runs = get_runs(project, filters)
    print(f'Using {ntop}/{len(all_runs)} runs with more than {min_steps} events')
    pbar = tqdm.tqdm(all_runs)
    runs = []
    n_events = 0
    successful = 0
    for i, run in enumerate(pbar):

        summary = run.summary
        if summary_filters is not None and not summary_filters(summary):
            continue
        step = summary.get('_step',0)
        if step < min_steps:
            # warnings.warn(f'Skipped run `{run.name}` because it contains {step} events (<{min_steps})')
            continue

        prog_msg = f'Loading data {i/len(all_runs)*100:.0f}% ({successful}/{len(all_runs)} runs, {n_events} events)'
        pbar.set_description(f'{prog_msg}... **fetching** `{run.name}`')

        duration = summary.get('_runtime')
        end_time = summary.get('_timestamp')
        # extract values for selected tags
        rules = {'hotkey': re.compile('^[0-9a-z]{48}$',re.IGNORECASE), 'version': re.compile('^\\d\.\\d+\.\\d+$'), 'spec_version': re.compile('\\d{4}$')}
        tags = {k: tag for k, rule in rules.items() for tag in run.tags if rule.match(tag)}
        # include bool flag for remaining tags
        tags.update({k: True for k in run.tags if k not in tags.keys() and k not in tags.values()})

        runs.append({
            'state': run.state,
            'num_steps': step,
            'num_completions': step*sum(len(v) for k, v in run.summary.items() if k.endswith('completions') and isinstance(v, list)),
            'entity': run.entity,
            'user': run.user.name,
            'username': run.user.username,
            'run_id': run.id,
            'run_name': run.name,
            'project': run.project,
            'run_url': run.url,
            'run_path': os.path.join(run.entity, run.project, run.id),
            'start_time': pd.to_datetime(end_time-duration, unit="s"),
            'end_time': pd.to_datetime(end_time, unit="s"),
            'duration': pd.to_timedelta(duration, unit="s").round('s'),
            **tags
        })
        n_events += step
        successful += 1
        if successful >= ntop:
            break

    cat_cols = ['state', 'hotkey', 'version', 'spec_version']
    return pd.DataFrame(runs).astype({k: 'category' for k in cat_cols if k in runs[0]})



def get_runs(project: str = "openvalidators", filters: Dict[str, Any] = None, return_paths: bool = False, api_key: str = None) -> List:
    """Download runs from wandb.

    Args:
        project (str): Name of the project. Defaults to 'openvalidators' (community project)
        filters (Dict[str, Any], optional): Optional run filters for wandb api. Defaults to None.
        return_paths (bool, optional): Return only run paths. Defaults to False.

    Returns:
        List[wandb.apis.public.Run]: List of runs or run paths (List[str]).
    """
    api = wandb.Api(api_key=api_key)
    wandb.login(anonymous="allow")

    runs = api.runs(project, filters=filters)
    if return_paths:
        return [os.path.join(run.entity, run.project, run.id) for run in runs]
    else:
        return runs


def download_data(run_path: Union[str, List] = None, timeout: float = 600, api_key: str = None) -> pd.DataFrame:
    """Download data from wandb.

    Args:
        run_path (Union[str, List], optional): Path to run or list of paths. Defaults to None.
        timeout (float, optional): Timeout for wandb api. Defaults to 600.

    Returns:
        pd.DataFrame: Dataframe of event log.
    """
    api = wandb.Api(api_key=api_key, timeout=timeout)
    wandb.login(anonymous="allow")

    if isinstance(run_path, str):
        run_path = [run_path]

    frames = []
    total_events = 0
    pbar = tqdm.tqdm(sorted(run_path), desc="Loading history from wandb", total=len(run_path), unit="run")
    for path in pbar:
        run = api.run(path)

        frame = pd.DataFrame(list(run.scan_history()))
        frames.append(frame)
        total_events += len(frame)

        pbar.set_postfix({"total_events": total_events})

    df = pd.concat(frames)

    # Convert timestamp to datetime.
    df._timestamp = pd.to_datetime(df._timestamp, unit="s")
    df.sort_values("_timestamp", inplace=True)

    return df


def read_data(path: str, nrows: int = None):
    """Load data from csv."""
    df = pd.read_csv(path, nrows=nrows)
    # filter out events with missing step length
    df = df.loc[df.step_length.notna()]

    # detect list columns which as stored as strings
    list_cols = [c for c in df.columns if df[c].dtype == "object" and df[c].str.startswith("[").all()]
    # convert string representation of list to list
    df[list_cols] = df[list_cols].applymap(eval, na_action='ignore')

    return df

def load_data(selected_runs, load=True, save=False, explode=True, datadir='data/'):

    frames = []
    n_events = 0
    successful = 0
    if not os.path.exists(datadir):
        os.makedirs(datadir)

    pbar = tqdm.tqdm(selected_runs.index, desc="Loading runs", total=len(selected_runs), unit="run")
    for i, idx in enumerate(pbar):
        run = selected_runs.loc[idx]
        prog_msg = f'Loading data {i/len(selected_runs)*100:.0f}% ({successful}/{len(selected_runs)} runs, {n_events} events)'

        file_path = os.path.join(datadir,f'history-{run.run_id}.csv')

        if (load is True and os.path.exists(file_path)) or (callable(load) and load(run.to_dict())):
            pbar.set_description(f'{prog_msg}... **reading** `{file_path}`')
            try:
                df = read_data(file_path)
            except Exception as e:
                print(f'Failed to load history from `{file_path}`: {format_exc(e)}')
                continue
        else:
            pbar.set_description(f'{prog_msg}... **downloading** `{run.run_path}`')
            try:
                # Download the history from wandb and add metadata
                df = download_data(run.run_path).assign(**run.to_dict())
                if explode:
                    df = explode_data(df)

                print(f'Downloaded {df.shape[0]} events from `{run.run_path}`. Columns: {df.columns}')

                if save is True or (callable(save) and save(run.to_dict())):
                    df.to_csv(file_path, index=False)
                    print(f'Saved {df.shape[0]} events to `{file_path}`')

            except Exception as e:
                print(f'Failed to download history for `{run.run_path}`: {e}')
                continue

        frames.append(df)
        n_events += df.shape[0]
        successful += 1

    # Remove rows which contain chain weights as it messes up schema
    return pd.concat(frames)


def explode_data(df: pd.DataFrame, list_cols: List[str] = None, list_len: int = None) -> pd.DataFrame:
    """Explode list columns in dataframe so that each element in the list is a separate row.

    Args:
        df (pd.DataFrame): Dataframe of event log.
        list_cols (List[str], optional): List of columns to explode. Defaults to None.
        list_len (int, optional): Length of list. Defaults to None.

    Returns:
        pd.DataFrame: Dataframe with exploded list columns.
    """
    if list_cols is None:
        list_cols = [c for c in df.columns if df[c].apply(is_list_like).all()]
        print(f"Exploding {len(list_cols)}) list columns with {list_len} elements: {list_cols}")
    if list_len:
        list_cols = [c for c in list_cols if df[c].apply(len).unique()[0] == list_len]
        print(f"Exploding {len(list_cols)}) list columns with {list_len} elements: {list_cols}")

    return df.explode(column=list_cols)


def get_list_col_lengths(df: pd.DataFrame) -> Dict[str, int]:
    """Helper function to get the length of list columns."""
    list_col_lengths = {c: sorted(df[c].apply(len).unique()) for c in df.columns if df[c].apply(is_list_like).all()}
    varying_lengths = {c: v for c, v in list_col_lengths.items() if len(v) > 1}

    if len(varying_lengths) > 0:
        print(f"The following columns have varying lengths: {varying_lengths}")

    return {c: v[0] for c, v in list_col_lengths.items() if v}