Spaces:
Paused
Paused
import os | |
import re | |
import argparse | |
import tqdm | |
import wandb | |
import traceback | |
import plotly.express as px | |
import pandas as pd | |
from concurrent.futures import ProcessPoolExecutor | |
import opendashboards.utils.utils as utils | |
import opendashboards.utils.aggregate as aggregate | |
from IPython.display import display | |
api= wandb.Api(timeout=60) | |
wandb.login(anonymous="allow") | |
def pull_wandb_runs(project='openvalidators', filters=None, min_steps=50, max_steps=100_000, ntop=10, netuid=None, summary_filters=None ): | |
# TODO: speed this up by storing older runs | |
all_runs = api.runs(project, filters=filters) | |
print(f'Using {ntop}/{len(all_runs)} runs with more than {min_steps} events') | |
pbar = tqdm.tqdm(all_runs) | |
runs = [] | |
n_events = 0 | |
successful = 0 | |
for i, run in enumerate(pbar): | |
summary = run.summary | |
if summary_filters is not None and not summary_filters(summary): | |
continue | |
if netuid is not None and run.config.get('netuid') != netuid: | |
continue | |
step = summary.get('_step',0) | |
if step < min_steps or step > max_steps: | |
# warnings.warn(f'Skipped run `{run.name}` because it contains {step} events (<{min_steps})') | |
continue | |
prog_msg = f'Loading data {successful/ntop*100:.0f}% ({successful}/{ntop} runs, {n_events} events)' | |
pbar.set_description(f'{prog_msg}... **fetching** `{run.name}`') | |
duration = summary.get('_runtime') | |
end_time = summary.get('_timestamp') | |
# extract values for selected tags | |
rules = {'hotkey': re.compile('^[0-9a-z]{48}$',re.IGNORECASE), 'version': re.compile('^\\d\.\\d+\.\\d+$'), 'spec_version': re.compile('\\d{4}$')} | |
tags = {k: tag for k, rule in rules.items() for tag in run.tags if rule.match(tag)} | |
# include bool flag for remaining tags | |
tags.update({k: True for k in run.tags if k not in tags.keys() and k not in tags.values()}) | |
runs.append({ | |
'state': run.state, | |
'num_steps': step, | |
'num_completions': step*sum(len(v) for k, v in run.summary.items() if k.endswith('completions') and isinstance(v, list)), | |
'entity': run.entity, | |
'user': run.user.name, | |
'username': run.user.username, | |
'run_id': run.id, | |
'run_name': run.name, | |
'project': run.project, | |
'run_url': run.url, | |
'run_path': os.path.join(run.entity, run.project, run.id), | |
'start_time': pd.to_datetime(end_time-duration, unit="s"), | |
'end_time': pd.to_datetime(end_time, unit="s"), | |
'duration': pd.to_timedelta(duration, unit="s").round('s'), | |
'netuid': run.config.get('netuid'), | |
**tags | |
}) | |
n_events += step | |
successful += 1 | |
if successful >= ntop: | |
break | |
return pd.DataFrame(runs).astype({'state': 'category', 'hotkey': 'category', 'version': 'category', 'spec_version': 'category'}) | |
def plot_gantt(df_runs): | |
fig = px.timeline(df_runs, | |
x_start="start_time", x_end="end_time", y="username", color="state", | |
title="Timeline of Runs", | |
category_orders={'run_name': df_runs.run_name.unique()},#,'username': sorted(df_runs.username.unique())}, | |
hover_name="run_name", | |
hover_data=['hotkey','user','username','run_id','num_steps','num_completions'], | |
color_discrete_map={'running': 'green', 'finished': 'grey', 'killed':'blue', 'crashed':'orange', 'failed': 'red'}, | |
opacity=0.3, | |
width=1200, | |
height=800, | |
template="plotly_white", | |
) | |
fig.update_yaxes(tickfont_size=8, title='') | |
fig.show() | |
def clean_data(df): | |
return df.dropna(subset=df.filter(regex='completions|rewards').columns, how='any').dropna(axis=1, how='all') | |
def explode_data(df): | |
list_cols = utils.get_list_col_lengths(df) | |
return utils.explode_data(df, list(list_cols.keys())).apply(pd.to_numeric, errors='ignore') | |
def load_data(run_id, run_path=None, load=True, save=False, explode=True): | |
file_path = os.path.join('data/runs/',f'history-{run_id}.parquet') | |
if load and os.path.exists(file_path): | |
df = pd.read_parquet(file_path) | |
# filter out events with missing step length | |
df = df.loc[df.step_length.notna()] | |
# detect list columns which as stored as strings | |
ignore_cols = ('moving_averaged_scores') | |
list_cols = [c for c in df.columns if c not in ignore_cols and df[c].dtype == "object" and df[c].str.startswith("[").all()] | |
# convert string representation of list to list | |
# df[list_cols] = df[list_cols].apply(lambda x: eval(x, {'__builtins__': None}) if pd.notna(x) else x) | |
try: | |
df[list_cols] = df[list_cols].fillna('').applymap(eval, na_action='ignore') | |
except ValueError as e: | |
print(f'Error loading {file_path!r} when converting columns {list_cols} to list: {e}', flush=True) | |
else: | |
# Download the history from wandb and add metadata | |
run = api.run(run_path) | |
df = pd.DataFrame(list(run.scan_history())) | |
# Remove rows with missing completions or rewards, which will be stuff related to weights | |
df.dropna(subset=df.filter(regex='completions|rewards').columns, how='any', inplace=True) | |
print(f'Downloaded {df.shape[0]} events from {run_path!r} with id {run_id!r}') | |
# Clean and explode dataframe | |
# overwrite object to free memory | |
float_cols = df.filter(regex='reward').columns | |
df = explode_data(clean_data(df)).astype({c: float for c in float_cols}).fillna({c: 0 for c in float_cols}) | |
if save: | |
df.to_parquet(file_path, index=False) | |
# Convert timestamp to datetime. | |
df._timestamp = pd.to_datetime(df._timestamp, unit="s") | |
return df.sort_values("_timestamp") | |
def calculate_stats(df_long, freq='H', save_path=None, ntop=3 ): | |
df_long._timestamp = pd.to_datetime(df_long._timestamp) | |
# if dataframe has columns such as followup_completions and answer_completions, convert to multiple rows | |
if 'completions' not in df_long.columns: | |
df_long.set_index(['_timestamp','run_id'], inplace=True) | |
df_schema = pd.concat([ | |
df_long[['followup_completions','followup_rewards']].rename(columns={'followup_completions':'completions', 'followup_rewards':'rewards'}), | |
df_long[['answer_completions','answer_rewards']].rename(columns={'answer_completions':'completions', 'answer_rewards':'rewards'}) | |
]) | |
df_long = df_schema.reset_index() | |
run_id = df_long['run_id'].iloc[0] | |
# print(f'Calculating stats for run {run_id!r} dataframe with shape {df_long.shape}') | |
# Approximate number of tokens in each completion | |
df_long['completion_num_tokens'] = (df_long['completions'].astype(str).str.split().str.len() / 0.75).round() | |
# TODO: use named aggregations | |
reward_aggs = ['sum','mean','std','median','max',aggregate.nonzero_rate, aggregate.nonzero_mean, aggregate.nonzero_std, aggregate.nonzero_median] | |
aggs = { | |
'completions': ['nunique','count', aggregate.diversity, aggregate.successful_diversity, aggregate.success_rate], | |
'completion_num_tokens': ['mean', 'std', 'median', 'max'], | |
**{k: reward_aggs for k in df_long.filter(regex='reward') if df_long[k].nunique() > 1} | |
} | |
# Calculate tokens per second | |
if 'completion_times' in df_long.columns: | |
df_long['tokens_per_sec'] = df_long['completion_num_tokens']/(df_long['completion_times']+1e-6) | |
aggs.update({ | |
'completion_times': ['mean','std','median','min','max'], | |
'tokens_per_sec': ['mean','std','median','max'], | |
}) | |
grouper = df_long.groupby(pd.Grouper(key='_timestamp', axis=0, freq=freq)) | |
# carry out main aggregations | |
stats = grouper.agg(aggs) | |
# carry out multi-column aggregations using apply | |
diversity = grouper.apply(aggregate.successful_nonzero_diversity) | |
# carry out top completions aggregations using apply | |
top_completions = grouper.apply(aggregate.completion_top_stats, exclude='', ntop=ntop).unstack() | |
# combine all aggregations, which have the same index | |
stats = pd.concat([stats, diversity, top_completions], axis=1) | |
# flatten multiindex columns | |
stats.columns = ['_'.join([str(cc) for cc in c]) if isinstance(c, tuple) else str(c) for c in stats.columns] | |
stats = stats.reset_index().assign(run_id=run_id) | |
if save_path: | |
stats.to_csv(save_path, index=False) | |
return stats | |
def process(run, load=True, save=False, load_stats=True, freq='H', ntop=3): | |
try: | |
stats_path = f'data/aggs/stats-{run["run_id"]}.csv' | |
if load_stats and os.path.exists(stats_path): | |
print(f'Loaded stats file {stats_path!r}') | |
return pd.read_csv(stats_path) | |
# Load data and add extra columns from wandb run | |
df_long = load_data(run_id=run['run_id'], | |
run_path=run['run_path'], | |
load=load, | |
save=save, | |
# save = (run['state'] != 'running') & run['end_time'] | |
).assign(**run.to_dict()) | |
assert isinstance(df_long, pd.DataFrame), f'Expected dataframe, but got {type(df_long)}' | |
# Get and save stats | |
return calculate_stats(df_long, freq=freq, save_path=stats_path, ntop=ntop) | |
except Exception as e: | |
print(f'Error processing run {run["run_id"]!r}:\t{e.__class__.__name__}: {e}',flush=True) | |
print(traceback.format_exc()) | |
def line_chart(df, col, title=None): | |
title = title or col.replace('_',' ').title() | |
fig = px.line(df.astype({'_timestamp':str}), | |
x='_timestamp', y=col, | |
line_group='run_id', | |
title=f'{title} over Time', | |
labels={'_timestamp':'', col: title, 'uids':'UID','value':'counts', 'variable':'Completions'}, | |
width=800, height=600, | |
template='plotly_white', | |
).update_traces(opacity=0.2) | |
fig.write_image(f'data/figures/{col}.png') | |
fig.write_html(f'data/figures/{col}.html') | |
return col | |
def parse_arguments(): | |
parser = argparse.ArgumentParser(description='Process wandb validator runs for a given netuid.') | |
parser.add_argument('--load_runs',action='store_true', help='Load runs from file.') | |
parser.add_argument('--repull_unfinished',action='store_true', help='Re-pull runs that were running when downloaded and saved.') | |
parser.add_argument('--netuid', type=int, default=None, help='Network UID to use.') | |
parser.add_argument('--ntop', type=int, default=1000, help='Number of runs to process.') | |
parser.add_argument('--min_steps', type=int, default=100, help='Minimum number of steps to include.') | |
parser.add_argument('--max_workers', type=int, default=32, help='Max workers to use.') | |
parser.add_argument('--no_plot',action='store_true', help='Prevent plotting.') | |
parser.add_argument('--no_save',action='store_true', help='Prevent saving data to file.') | |
parser.add_argument('--no_load',action='store_true', help='Prevent loading downloaded data from file.') | |
parser.add_argument('--no_load_stats',action='store_true', help='Prevent loading stats data from file.') | |
parser.add_argument('--freq', type=str, default='H', help='Frequency to aggregate data.') | |
parser.add_argument('--completions_ntop', type=int, default=3, help='Number of top completions to include in stats.') | |
return parser.parse_args() | |
if __name__ == '__main__': | |
# TODO: flag to overwrite runs that were running when downloaded and saved: check if file date is older than run end time. | |
args = parse_arguments() | |
print(args) | |
filters = None# {"tags": {"$in": [f'1.1.{i}' for i in range(10)]}} | |
# filters={'tags': {'$in': ['5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3']}} # Is foundation validator | |
if args.load_runs and os.path.exists('data/wandb.csv'): | |
df_runs = pd.read_csv('data/wandb.csv') | |
assert len(df_runs) >= args.ntop, f'Loaded {len(df_runs)} runs, but expected at least {args.ntop}' | |
df_runs = df_runs.iloc[:args.ntop] | |
else: | |
df_runs = pull_wandb_runs(ntop=args.ntop, | |
min_steps=args.min_steps, | |
netuid=args.netuid, | |
filters=filters | |
)#summary_filters=lambda s: s.get('augment_prompt')) | |
df_runs.to_csv('data/wandb.csv', index=False) | |
os.makedirs('data/runs/', exist_ok=True) | |
os.makedirs('data/aggs/', exist_ok=True) | |
os.makedirs('data/figures/', exist_ok=True) | |
display(df_runs) | |
if not args.no_plot: | |
plot_gantt(df_runs) | |
with ProcessPoolExecutor(max_workers=min(args.max_workers, df_runs.shape[0])) as executor: | |
futures = [executor.submit( | |
process, | |
run, | |
load=not args.no_load, | |
save=not args.no_save, | |
load_stats=not args.no_load_stats, | |
freq=args.freq, | |
ntop=args.completions_ntop | |
) | |
for _, run in df_runs.iterrows() | |
] | |
# Use tqdm to add a progress bar | |
results = [] | |
with tqdm.tqdm(total=len(futures)) as pbar: | |
for future in futures: | |
try: | |
result = future.result() | |
results.append(result) | |
except Exception as e: | |
print(f'-----------------------------\nWorker generated an exception in "process" function:\n{e.__class__.__name__}: {e}\n-----------------------------\n',flush=True) | |
pbar.update(1) | |
if not results: | |
raise ValueError('No runs were successfully processed.') | |
print(f'Processed {len(results)} runs.',flush=True) | |
# Concatenate the results into a single dataframe | |
df = pd.concat(results, ignore_index=True).sort_values(['_timestamp','run_id'], ignore_index=True) | |
df.to_csv('data/processed.csv', index=False) | |
print(f'Saved {df.shape[0]} rows to data/processed.csv') | |
display(df) | |
print(f'Unique values in columns:') | |
display(df.nunique().sort_values()) | |
if not args.no_plot: | |
plots = [] | |
cols = df.set_index(['run_id','_timestamp']).columns | |
with ProcessPoolExecutor(max_workers=min(args.max_workers, len(cols))) as executor: | |
futures = [executor.submit(line_chart, df, c) for c in cols] | |
# Use tqdm to add a progress bar | |
results = [] | |
with tqdm.tqdm(total=len(futures)) as pbar: | |
for future in futures: | |
try: | |
result = future.result() | |
plots.append(result) | |
except Exception as e: | |
print(f'-----------------------------\nWorker generated an exception in "line_chart" function:\n{e.__class__.__name__}: {e}\n-----------------------------\n',flush=True) | |
# traceback.print_exc() | |
pbar.update(1) | |
print(f'Saved {len(plots)} plots to data/figures/') | |