steffenc commited on
Commit
783af34
·
1 Parent(s): 7980ef4

declutter layout

Browse files
Files changed (2) hide show
  1. app.py +8 -9
  2. opendashboards/assets/metric.py +12 -13
app.py CHANGED
@@ -21,7 +21,7 @@ from opendashboards.assets import io, inspect, metric, plot
21
 
22
  WANDB_PROJECT = "opentensor-dev/alpha-validators"
23
  PROJECT_URL = f'https://wandb.ai/{WANDB_PROJECT}/table?workspace=default'
24
- MAX_RECENT_RUNS = 100
25
  DEFAULT_FILTERS = {}#{"tags": {"$in": [f'1.1.{i}' for i in range(10)]}}
26
  DEFAULT_SELECTED_HOTKEYS = None
27
  DEFAULT_TASK = 'qa'
@@ -56,13 +56,6 @@ metric.wandb(df_runs)
56
 
57
  # add vertical space
58
  st.markdown('#')
59
-
60
- runid_c1, runid_c2 = st.columns([3, 1])
61
- # make multiselect for run_ids with label on same line
62
- run_ids = runid_c1.multiselect('Select one or more weights and biases run by id:', df_runs['run_id'], key='run_id', default=df_runs['run_id'][:3], help=f'Select one or more runs to analyze. You can find the raw data for these runs [here]({PROJECT_URL}).')
63
- n_runs = len(run_ids)
64
- df_runs_subset = df_runs[df_runs['run_id'].isin(run_ids)]
65
-
66
  st.markdown('#')
67
 
68
  tab1, tab2, tab3, tab4 = st.tabs(["Run Data", "UID Health", "Completions", "Prompt-based scoring"])
@@ -72,7 +65,13 @@ with tab1:
72
 
73
  st.markdown('#')
74
  st.subheader(":violet[Run] Data")
75
- with st.expander(f'Show :violet[all] wandb runs'):
 
 
 
 
 
 
76
 
77
  edited_df = st.data_editor(
78
  df_runs.assign(Select=False).set_index('Select'),
 
21
 
22
  WANDB_PROJECT = "opentensor-dev/alpha-validators"
23
  PROJECT_URL = f'https://wandb.ai/{WANDB_PROJECT}/table?workspace=default'
24
+ MAX_RECENT_RUNS = 300
25
  DEFAULT_FILTERS = {}#{"tags": {"$in": [f'1.1.{i}' for i in range(10)]}}
26
  DEFAULT_SELECTED_HOTKEYS = None
27
  DEFAULT_TASK = 'qa'
 
56
 
57
  # add vertical space
58
  st.markdown('#')
 
 
 
 
 
 
 
59
  st.markdown('#')
60
 
61
  tab1, tab2, tab3, tab4 = st.tabs(["Run Data", "UID Health", "Completions", "Prompt-based scoring"])
 
65
 
66
  st.markdown('#')
67
  st.subheader(":violet[Run] Data")
68
+
69
+ # make multiselect for run_ids with label on same line
70
+ run_ids = st.multiselect('Select one or more weights and biases run by id:', df_runs['run_id'], key='run_id', default=df_runs['run_id'][:3], help=f'Select one or more runs to analyze. You can find the raw data for these runs [here]({PROJECT_URL}).')
71
+ n_runs = len(run_ids)
72
+ df_runs_subset = df_runs[df_runs['run_id'].isin(run_ids)]
73
+
74
+ with st.expander(f'Select from :violet[all] wandb runs'):
75
 
76
  edited_df = st.data_editor(
77
  df_runs.assign(Select=False).set_index('Select'),
opendashboards/assets/metric.py CHANGED
@@ -28,29 +28,28 @@ def wandb(df_runs):
28
  col2.metric('Hotkeys', fmt(df_runs.hotkey.nunique()), delta=fmt(df_runs.hotkey.nunique()-df_runs_old.hotkey.nunique())+' (24h)')
29
  col3.metric('Events', fmt(df_runs.num_steps.sum()), delta=fmt(df_runs.num_steps.sum()-df_runs_old.num_steps.sum())+' (24h)')
30
  col4.metric('Completions', fmt(df_runs.num_completions.sum()), delta=fmt(df_runs.num_completions.sum()-df_runs_old.num_completions.sum())+' (24h)')
31
-
32
  st.markdown('----')
33
 
34
 
35
  @st.cache_data
36
- def runs(df_long):
37
-
38
  col1, col2, col3, col4 = st.columns(4)
39
- print(df_long.columns)
40
 
41
  # Convert to appropriate units e.g. 1.2k instead of 1200.c
42
  col1.metric('Runs', fmt(df_long.run_id.nunique()))
43
  col2.metric('Hotkeys', fmt(df_long.hotkey.nunique()))
44
  col3.metric('Events', fmt(df_long.groupby(['run_id','_step']).ngroups))
45
  col4.metric('Completions', fmt(df_long.shape[0]))
46
-
47
- aggs = df_long.groupby('task').agg({'uids': 'nunique', 'completions': 'nunique'})
48
- print(aggs)
49
- for i,c in enumerate(st.columns(len(aggs))):
50
- name = aggs.index[i].title()
51
- uid_unique, comp_unique = aggs.iloc[i]
52
- c.metric(label=f'{name} UIDs', value=uid_unique)
53
- c.metric(label=f'{name} Completions', value=comp_unique)
54
 
55
  st.markdown('----')
56
 
@@ -76,7 +75,7 @@ def uids(df_long, src, uids=None):
76
  help='Number of unique completions divided by total number of events'
77
  )
78
  # uniqueness can be expressed as the average number of unique completions per uid divided by all unique completions
79
- # uniqueness is the shared completions between selected uids
80
 
81
  col3.metric(
82
  label="Uniqueness %",
 
28
  col2.metric('Hotkeys', fmt(df_runs.hotkey.nunique()), delta=fmt(df_runs.hotkey.nunique()-df_runs_old.hotkey.nunique())+' (24h)')
29
  col3.metric('Events', fmt(df_runs.num_steps.sum()), delta=fmt(df_runs.num_steps.sum()-df_runs_old.num_steps.sum())+' (24h)')
30
  col4.metric('Completions', fmt(df_runs.num_completions.sum()), delta=fmt(df_runs.num_completions.sum()-df_runs_old.num_completions.sum())+' (24h)')
31
+
32
  st.markdown('----')
33
 
34
 
35
  @st.cache_data
36
+ def runs(df_long, full=False):
37
+
38
  col1, col2, col3, col4 = st.columns(4)
 
39
 
40
  # Convert to appropriate units e.g. 1.2k instead of 1200.c
41
  col1.metric('Runs', fmt(df_long.run_id.nunique()))
42
  col2.metric('Hotkeys', fmt(df_long.hotkey.nunique()))
43
  col3.metric('Events', fmt(df_long.groupby(['run_id','_step']).ngroups))
44
  col4.metric('Completions', fmt(df_long.shape[0]))
45
+
46
+ if full:
47
+ aggs = df_long.groupby('task').agg({'uids': 'nunique', 'completions': 'nunique'})
48
+ for i,c in enumerate(st.columns(len(aggs))):
49
+ name = aggs.index[i].title()
50
+ uid_unique, comp_unique = aggs.iloc[i]
51
+ c.metric(label=f'{name} UIDs', value=uid_unique)
52
+ c.metric(label=f'{name} Completions', value=comp_unique)
53
 
54
  st.markdown('----')
55
 
 
75
  help='Number of unique completions divided by total number of events'
76
  )
77
  # uniqueness can be expressed as the average number of unique completions per uid divided by all unique completions
78
+ # uniqueness is the shared completions between selected uids
79
 
80
  col3.metric(
81
  label="Uniqueness %",