Spaces:
Paused
Paused
Lvl up
Browse files- dashboard.py +71 -30
- opendashboards/assets/inspect.py +4 -1
- opendashboards/assets/io.py +96 -0
- opendashboards/assets/metric.py +3 -3
- opendashboards/assets/plot.py +12 -0
- opendashboards/utils/plotting.py +35 -6
dashboard.py
CHANGED
@@ -1,13 +1,16 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from opendashboards.assets import io, inspect, metric, plot
|
3 |
|
4 |
-
# dendrite time versus completion length
|
5 |
# prompt-based completion score stats
|
6 |
# instrospect specific RUN-UID-COMPLETION
|
|
|
7 |
|
8 |
DEFAULT_PROJECT = "openvalidators"
|
9 |
DEFAULT_FILTERS = {"tags": {"$in": ["1.0.0", "1.0.1", "1.0.2", "1.0.3", "1.0.4"]}}
|
10 |
DEFAULT_SELECTED_RUNS = ['kt9bzxii']
|
|
|
11 |
DEFAULT_SRC = 'followup'
|
12 |
DEFAULT_COMPLETION_NTOP = 10
|
13 |
DEFAULT_UID_NTOP = 10
|
@@ -31,59 +34,80 @@ st.title('Validator :red[Analysis] Dashboard :eyes:')
|
|
31 |
st.markdown('#')
|
32 |
st.markdown('#')
|
33 |
|
34 |
-
# with st.sidebar:
|
35 |
-
# st.sidebar.header('Pages')
|
36 |
|
37 |
with st.spinner(text=f'Checking wandb...'):
|
38 |
df_runs = io.load_runs(project=DEFAULT_PROJECT, filters=DEFAULT_FILTERS, min_steps=10)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
metric.wandb(df_runs)
|
41 |
|
|
|
42 |
# add vertical space
|
43 |
st.markdown('#')
|
44 |
st.markdown('#')
|
45 |
|
46 |
-
tab1, tab2, tab3, tab4 = st.tabs(["
|
47 |
-
|
48 |
|
49 |
### Wandb Runs ###
|
50 |
with tab1:
|
51 |
|
52 |
st.markdown('#')
|
53 |
-
st.
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
st.stop()
|
64 |
|
65 |
-
|
66 |
-
df_long = inspect.explode_data(df)
|
67 |
-
df_weights = inspect.weights(df)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
with st.expander(f'Show :violet[raw] data for {
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
### UID Health ###
|
76 |
with tab2:
|
77 |
|
78 |
st.markdown('#')
|
79 |
-
st.
|
80 |
-
st.info(f"Showing UID health metrics for **{
|
81 |
|
82 |
uid_src = st.radio('Select one:', ['followup', 'answer'], horizontal=True, key='uid_src')
|
83 |
|
84 |
metric.uids(df_long, uid_src)
|
85 |
|
86 |
-
with st.expander(f'Show UID **{uid_src}** weights data for **{
|
87 |
|
88 |
uids = st.multiselect('UID:', sorted(df_long[f'{uid_src}_uids'].unique()), key='uid')
|
89 |
st.markdown('#')
|
@@ -93,8 +117,8 @@ with tab2:
|
|
93 |
df_weights,
|
94 |
uids=uids,
|
95 |
)
|
96 |
-
|
97 |
-
with st.expander(f'Show UID **{uid_src}** leaderboard data for **{
|
98 |
|
99 |
st.markdown('#')
|
100 |
st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]")
|
@@ -111,7 +135,7 @@ with tab2:
|
|
111 |
)
|
112 |
|
113 |
|
114 |
-
with st.expander(f'Show UID **{uid_src}** diversity data for **{
|
115 |
|
116 |
st.markdown('#')
|
117 |
st.subheader(f"UID {uid_src.title()} :violet[Diversity]")
|
@@ -128,13 +152,14 @@ with tab3:
|
|
128 |
|
129 |
msg_col1, msg_col2 = st.columns(2)
|
130 |
completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src')
|
131 |
-
completion_info.info(f"Showing **{completion_src}** completions for **{
|
132 |
-
|
133 |
completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop')
|
134 |
|
135 |
completion_col = f'{completion_src}_completions'
|
136 |
reward_col = f'{completion_src}_rewards'
|
137 |
uid_col = f'{completion_src}_uids'
|
|
|
138 |
|
139 |
completions = inspect.completions(df_long, completion_col)
|
140 |
|
@@ -148,7 +173,7 @@ with tab3:
|
|
148 |
alias=True
|
149 |
)
|
150 |
|
151 |
-
with st.expander(f'Show **{completion_src}** completion rewards data for **{
|
152 |
|
153 |
st.markdown('#')
|
154 |
st.subheader('Completion :violet[Rewards]')
|
@@ -166,10 +191,26 @@ with tab3:
|
|
166 |
)
|
167 |
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
### Prompt-based scoring ###
|
170 |
with tab4:
|
171 |
# coming soon
|
172 |
st.info('Prompt-based scoring coming soon')
|
|
|
173 |
|
174 |
# st.dataframe(df_long_long.filter(regex=prompt_src).head())
|
175 |
|
|
|
1 |
+
import time
|
2 |
+
import pandas as pd
|
3 |
import streamlit as st
|
4 |
from opendashboards.assets import io, inspect, metric, plot
|
5 |
|
|
|
6 |
# prompt-based completion score stats
|
7 |
# instrospect specific RUN-UID-COMPLETION
|
8 |
+
# cache individual file loads
|
9 |
|
10 |
DEFAULT_PROJECT = "openvalidators"
|
11 |
DEFAULT_FILTERS = {"tags": {"$in": ["1.0.0", "1.0.1", "1.0.2", "1.0.3", "1.0.4"]}}
|
12 |
DEFAULT_SELECTED_RUNS = ['kt9bzxii']
|
13 |
+
DEFAULT_SELECTED_HOTKEYS = None
|
14 |
DEFAULT_SRC = 'followup'
|
15 |
DEFAULT_COMPLETION_NTOP = 10
|
16 |
DEFAULT_UID_NTOP = 10
|
|
|
34 |
st.markdown('#')
|
35 |
st.markdown('#')
|
36 |
|
|
|
|
|
37 |
|
38 |
with st.spinner(text=f'Checking wandb...'):
|
39 |
df_runs = io.load_runs(project=DEFAULT_PROJECT, filters=DEFAULT_FILTERS, min_steps=10)
|
40 |
|
41 |
+
|
42 |
+
### Wandb Runs ###
|
43 |
+
with st.sidebar:
|
44 |
+
|
45 |
+
st.markdown('#')
|
46 |
+
st.sidebar.header(":violet[Select] Runs")
|
47 |
+
|
48 |
+
df_runs_subset = io.filter_dataframe(df_runs, demo_selection=df_runs.id.isin(DEFAULT_SELECTED_RUNS))
|
49 |
+
n_runs = len(df_runs_subset)
|
50 |
+
|
51 |
metric.wandb(df_runs)
|
52 |
|
53 |
+
|
54 |
# add vertical space
|
55 |
st.markdown('#')
|
56 |
st.markdown('#')
|
57 |
|
58 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Raw Data", "UID Health", "Completions", "Prompt-based scoring"])
|
|
|
59 |
|
60 |
### Wandb Runs ###
|
61 |
with tab1:
|
62 |
|
63 |
st.markdown('#')
|
64 |
+
st.subheader(":violet[Run] Data")
|
65 |
+
with st.expander(f'Show :violet[raw] wandb data'):
|
66 |
+
|
67 |
+
filter_selected_checkbox = st.checkbox('Filter to selected runs', value=True)
|
68 |
+
df_to_show = df_runs_subset if filter_selected_checkbox else df_runs
|
69 |
+
|
70 |
+
# TODO: make this editable so that runs can be selected directly from the table
|
71 |
+
st.dataframe(
|
72 |
+
df_to_show.assign(
|
73 |
+
Selected=df_to_show.index.isin(df_runs_subset.index)
|
74 |
+
).set_index('Selected').sort_index(ascending=False),#.style.highlight_max(subset=df_runs_subset.index, color='lightgreen', axis=1),
|
75 |
+
use_container_width=True,
|
76 |
+
)
|
77 |
|
78 |
+
if n_runs:
|
79 |
+
df = io.load_data(df_runs_subset, load=True, save=True)
|
80 |
+
df_long = inspect.explode_data(df)
|
81 |
+
df_weights = inspect.weights(df)
|
82 |
+
else:
|
83 |
+
st.info(f'You must select at least one run to load data')
|
84 |
st.stop()
|
85 |
|
86 |
+
metric.runs(df_long)
|
|
|
|
|
87 |
|
88 |
+
st.markdown('#')
|
89 |
+
st.subheader(":violet[Event] Data")
|
90 |
+
with st.expander(f'Show :violet[raw] event data for **{n_runs} selected runs**'):
|
91 |
+
raw_data_col1, raw_data_col2 = st.columns(2)
|
92 |
+
use_long_checkbox = raw_data_col1.checkbox('Use long format', value=True)
|
93 |
+
num_rows = raw_data_col2.slider('Number of rows:', min_value=1, max_value=100, value=10, key='num_rows')
|
94 |
+
st.dataframe(df_long.head(num_rows) if use_long_checkbox else df.head(num_rows),
|
95 |
+
use_container_width=True)
|
96 |
+
|
97 |
|
98 |
|
99 |
### UID Health ###
|
100 |
with tab2:
|
101 |
|
102 |
st.markdown('#')
|
103 |
+
st.subheader("UID :violet[Health]")
|
104 |
+
st.info(f"Showing UID health metrics for **{n_runs} selected runs**")
|
105 |
|
106 |
uid_src = st.radio('Select one:', ['followup', 'answer'], horizontal=True, key='uid_src')
|
107 |
|
108 |
metric.uids(df_long, uid_src)
|
109 |
|
110 |
+
with st.expander(f'Show UID **{uid_src}** weights data for **{n_runs} selected runs**'):
|
111 |
|
112 |
uids = st.multiselect('UID:', sorted(df_long[f'{uid_src}_uids'].unique()), key='uid')
|
113 |
st.markdown('#')
|
|
|
117 |
df_weights,
|
118 |
uids=uids,
|
119 |
)
|
120 |
+
|
121 |
+
with st.expander(f'Show UID **{uid_src}** leaderboard data for **{n_runs} selected runs**'):
|
122 |
|
123 |
st.markdown('#')
|
124 |
st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]")
|
|
|
135 |
)
|
136 |
|
137 |
|
138 |
+
with st.expander(f'Show UID **{uid_src}** diversity data for **{n_runs} selected runs**'):
|
139 |
|
140 |
st.markdown('#')
|
141 |
st.subheader(f"UID {uid_src.title()} :violet[Diversity]")
|
|
|
152 |
|
153 |
msg_col1, msg_col2 = st.columns(2)
|
154 |
completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src')
|
155 |
+
completion_info.info(f"Showing **{completion_src}** completions for **{n_runs} selected runs**")
|
156 |
+
|
157 |
completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop')
|
158 |
|
159 |
completion_col = f'{completion_src}_completions'
|
160 |
reward_col = f'{completion_src}_rewards'
|
161 |
uid_col = f'{completion_src}_uids'
|
162 |
+
time_col = f'{completion_src}_times'
|
163 |
|
164 |
completions = inspect.completions(df_long, completion_col)
|
165 |
|
|
|
173 |
alias=True
|
174 |
)
|
175 |
|
176 |
+
with st.expander(f'Show **{completion_src}** completion rewards data for **{n_runs} selected runs**'):
|
177 |
|
178 |
st.markdown('#')
|
179 |
st.subheader('Completion :violet[Rewards]')
|
|
|
191 |
)
|
192 |
|
193 |
|
194 |
+
with st.expander(f'Show **{completion_src}** completion length data for **{n_runs} selected runs**'):
|
195 |
+
|
196 |
+
st.markdown('#')
|
197 |
+
st.subheader('Completion :violet[Length]')
|
198 |
+
|
199 |
+
words_checkbox = st.checkbox('Use words', value=True, key='words_checkbox')
|
200 |
+
|
201 |
+
plot.completion_length_time(
|
202 |
+
df,
|
203 |
+
completion_col=completion_col,
|
204 |
+
uid_col=uid_col,
|
205 |
+
time_col=time_col,
|
206 |
+
words=words_checkbox,
|
207 |
+
)
|
208 |
+
|
209 |
### Prompt-based scoring ###
|
210 |
with tab4:
|
211 |
# coming soon
|
212 |
st.info('Prompt-based scoring coming soon')
|
213 |
+
st.snow()
|
214 |
|
215 |
# st.dataframe(df_long_long.filter(regex=prompt_src).head())
|
216 |
|
opendashboards/assets/inspect.py
CHANGED
@@ -51,4 +51,7 @@ def run_event_data(df_runs, df, selected_runs):
|
|
51 |
column_config={
|
52 |
"url": st.column_config.LinkColumn("URL"),
|
53 |
}
|
54 |
-
)
|
|
|
|
|
|
|
|
51 |
column_config={
|
52 |
"url": st.column_config.LinkColumn("URL"),
|
53 |
}
|
54 |
+
)
|
55 |
+
|
56 |
+
def highlight_row(row, expr, color='lightgrey', bg_color='white'):
|
57 |
+
return [f'background-color:{color}' if expr else f'background-color:{bg_color}'] * len(row)
|
opendashboards/assets/io.py
CHANGED
@@ -5,6 +5,13 @@ import streamlit as st
|
|
5 |
|
6 |
import opendashboards.utils.utils as utils
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
@st.cache_data
|
10 |
def load_runs(project, filters, min_steps=10):
|
@@ -94,3 +101,92 @@ def load_data(selected_runs, load=True, save=False):
|
|
94 |
return pd.concat(frames)
|
95 |
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
import opendashboards.utils.utils as utils
|
7 |
|
8 |
+
from pandas.api.types import (
|
9 |
+
is_categorical_dtype,
|
10 |
+
is_datetime64_any_dtype,
|
11 |
+
is_numeric_dtype,
|
12 |
+
is_object_dtype,
|
13 |
+
)
|
14 |
+
|
15 |
|
16 |
@st.cache_data
|
17 |
def load_runs(project, filters, min_steps=10):
|
|
|
101 |
return pd.concat(frames)
|
102 |
|
103 |
|
104 |
+
def filter_dataframe(df: pd.DataFrame, demo_selection=None) -> pd.DataFrame:
|
105 |
+
"""
|
106 |
+
Adds a UI on top of a dataframe to let viewers filter columns
|
107 |
+
|
108 |
+
Args:
|
109 |
+
df (pd.DataFrame): Original dataframe
|
110 |
+
demo_selection (pd.Index): Index of runs to select (if demo)
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
pd.DataFrame: Filtered dataframe
|
114 |
+
"""
|
115 |
+
filter_mode = st.sidebar.radio("Filter mode", ("Use demo", "Add filters"), index=0)
|
116 |
+
|
117 |
+
run_msg = st.info("Select a single wandb run or compare multiple runs")
|
118 |
+
|
119 |
+
if filter_mode == "Use demo":
|
120 |
+
df = df.loc[demo_selection]
|
121 |
+
run_msg.info(f"Selected {len(df)} runs")
|
122 |
+
return df
|
123 |
+
|
124 |
+
df = df.copy()
|
125 |
+
|
126 |
+
# Try to convert datetimes into a standarrd format (datetime, no timezone)
|
127 |
+
for col in df.columns:
|
128 |
+
if is_object_dtype(df[col]):
|
129 |
+
try:
|
130 |
+
df[col] = pd.to_datetime(df[col])
|
131 |
+
except Exception:
|
132 |
+
pass
|
133 |
+
|
134 |
+
if is_datetime64_any_dtype(df[col]):
|
135 |
+
df[col] = df[col].dt.tz_localize(None)
|
136 |
+
|
137 |
+
modification_container = st.container()
|
138 |
+
|
139 |
+
with modification_container:
|
140 |
+
to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
|
141 |
+
for column in to_filter_columns:
|
142 |
+
left, right = st.columns((1, 20))
|
143 |
+
# Treat columns with < 10 unique values as categorical
|
144 |
+
if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
|
145 |
+
user_cat_input = right.multiselect(
|
146 |
+
f"Values for {column}",
|
147 |
+
df[column].unique(),
|
148 |
+
default=list(df[column].unique()),
|
149 |
+
)
|
150 |
+
df = df[df[column].isin(user_cat_input)]
|
151 |
+
elif is_numeric_dtype(df[column]):
|
152 |
+
_min = float(df[column].min())
|
153 |
+
_max = float(df[column].max())
|
154 |
+
step = (_max - _min) / 100
|
155 |
+
user_num_input = right.slider(
|
156 |
+
f"Values for {column}",
|
157 |
+
min_value=_min,
|
158 |
+
max_value=_max,
|
159 |
+
value=(_min, _max),
|
160 |
+
step=step,
|
161 |
+
)
|
162 |
+
df = df[df[column].between(*user_num_input)]
|
163 |
+
elif is_datetime64_any_dtype(df[column]):
|
164 |
+
user_date_input = right.date_input(
|
165 |
+
f"Values for {column}",
|
166 |
+
value=(
|
167 |
+
df[column].min(),
|
168 |
+
df[column].max(),
|
169 |
+
),
|
170 |
+
)
|
171 |
+
if len(user_date_input) == 2:
|
172 |
+
user_date_input = tuple(map(pd.to_datetime, user_date_input))
|
173 |
+
start_date, end_date = user_date_input
|
174 |
+
df = df.loc[df[column].between(start_date, end_date)]
|
175 |
+
else:
|
176 |
+
user_text_input = right.text_input(
|
177 |
+
f"Substring or regex in {column}",
|
178 |
+
)
|
179 |
+
if user_text_input:
|
180 |
+
df = df[df[column].astype(str).str.contains(user_text_input)]
|
181 |
+
|
182 |
+
|
183 |
+
# Load data if new runs selected
|
184 |
+
if len(df):
|
185 |
+
run_msg.info(f"Selected {len(df)} runs")
|
186 |
+
else:
|
187 |
+
# open a dialog to select runs
|
188 |
+
run_msg.error("Please select at least one run")
|
189 |
+
# st.snow()
|
190 |
+
# st.stop()
|
191 |
+
|
192 |
+
return df
|
opendashboards/assets/metric.py
CHANGED
@@ -18,11 +18,11 @@ def wandb(df_runs):
|
|
18 |
|
19 |
|
20 |
@st.cache_data
|
21 |
-
def runs(
|
22 |
|
23 |
col1, col2, col3 = st.columns(3)
|
24 |
-
col1.metric(label="Runs", value=
|
25 |
-
col1.metric(label="Events", value=
|
26 |
col2.metric(label="Followup UIDs", value=df_long.followup_uids.nunique())
|
27 |
col2.metric(label="Answer UIDs", value=df_long.answer_uids.nunique())
|
28 |
col3.metric(label="Followup Completions", value=df_long.followup_completions.nunique())
|
|
|
18 |
|
19 |
|
20 |
@st.cache_data
|
21 |
+
def runs(df_long):
|
22 |
|
23 |
col1, col2, col3 = st.columns(3)
|
24 |
+
col1.metric(label="Runs", value=df_long.run_id.nunique())
|
25 |
+
col1.metric(label="Events", value=df_long.shape[0])
|
26 |
col2.metric(label="Followup UIDs", value=df_long.followup_uids.nunique())
|
27 |
col2.metric(label="Answer UIDs", value=df_long.answer_uids.nunique())
|
28 |
col3.metric(label="Followup Completions", value=df_long.followup_completions.nunique())
|
opendashboards/assets/plot.py
CHANGED
@@ -53,4 +53,16 @@ def weights(df, uids, ntop=10):
|
|
53 |
ntop=ntop
|
54 |
),
|
55 |
use_container_width=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
)
|
|
|
53 |
ntop=ntop
|
54 |
),
|
55 |
use_container_width=True
|
56 |
+
)
|
57 |
+
|
58 |
+
def completion_length_time(df, completion_col, uid_col, time_col, words=False):
|
59 |
+
return st.plotly_chart(
|
60 |
+
plotting.plot_completion_length_time(
|
61 |
+
df,
|
62 |
+
uid_col=uid_col,
|
63 |
+
completion_col=completion_col,
|
64 |
+
time_col=time_col,
|
65 |
+
words=words
|
66 |
+
),
|
67 |
+
use_container_width=True
|
68 |
)
|
opendashboards/utils/plotting.py
CHANGED
@@ -97,8 +97,8 @@ def plot_uid_diversty(df: pd.DataFrame, remove_unsuccessful: bool = False) -> go
|
|
97 |
merged,
|
98 |
x="diversity_followup",
|
99 |
y="diversity_answer",
|
100 |
-
opacity=0.
|
101 |
-
size="followup_completions_size",
|
102 |
color="reward_mean",
|
103 |
hover_data=["UID"] + merged.columns.tolist(),
|
104 |
marginal_x="histogram",
|
@@ -219,7 +219,7 @@ def plot_completion_rewards(
|
|
219 |
labels={"rank": "Rank", reward_col: "Reward", time_col: ""},
|
220 |
title=f"Rewards for {len(completions)} Messages",
|
221 |
**plotly_config,
|
222 |
-
opacity=0.
|
223 |
)
|
224 |
|
225 |
|
@@ -258,12 +258,13 @@ def plot_leaderboard(
|
|
258 |
labels={"x": f"{agg_col.title()}", "y": group_on, "color": ""},
|
259 |
title=f"Leaderboard for {agg_col}, top {ntop} {group_on}",
|
260 |
color_continuous_scale="BlueRed",
|
261 |
-
opacity=0.
|
262 |
hover_data=[rankings.index.astype(str)],
|
263 |
**plotly_config,
|
264 |
)
|
265 |
|
266 |
|
|
|
267 |
def plot_dendrite_rates(
|
268 |
df: pd.DataFrame, uid_col: str = "answer_uids", reward_col: str = "answer_rewards", ntop: int = 20, uids: List[int] = None
|
269 |
) -> go.Figure:
|
@@ -297,10 +298,38 @@ def plot_dendrite_rates(
|
|
297 |
barmode="group",
|
298 |
title="Dendrite Calls by UID",
|
299 |
color_continuous_scale="Blues",
|
300 |
-
opacity=0.
|
301 |
**plotly_config,
|
302 |
)
|
303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
def plot_network_embedding(
|
306 |
df: pd.DataFrame,
|
@@ -358,6 +387,6 @@ def plot_network_embedding(
|
|
358 |
title=f"Graph for Top {ntop} Completion Similarities",
|
359 |
color_continuous_scale="BlueRed",
|
360 |
hover_data=["UID", "top_completions"],
|
361 |
-
opacity=0.
|
362 |
**plotly_config,
|
363 |
)
|
|
|
97 |
merged,
|
98 |
x="diversity_followup",
|
99 |
y="diversity_answer",
|
100 |
+
opacity=0.35,
|
101 |
+
# size="followup_completions_size",
|
102 |
color="reward_mean",
|
103 |
hover_data=["UID"] + merged.columns.tolist(),
|
104 |
marginal_x="histogram",
|
|
|
219 |
labels={"rank": "Rank", reward_col: "Reward", time_col: ""},
|
220 |
title=f"Rewards for {len(completions)} Messages",
|
221 |
**plotly_config,
|
222 |
+
opacity=0.35,
|
223 |
)
|
224 |
|
225 |
|
|
|
258 |
labels={"x": f"{agg_col.title()}", "y": group_on, "color": ""},
|
259 |
title=f"Leaderboard for {agg_col}, top {ntop} {group_on}",
|
260 |
color_continuous_scale="BlueRed",
|
261 |
+
opacity=0.35,
|
262 |
hover_data=[rankings.index.astype(str)],
|
263 |
**plotly_config,
|
264 |
)
|
265 |
|
266 |
|
267 |
+
|
268 |
def plot_dendrite_rates(
|
269 |
df: pd.DataFrame, uid_col: str = "answer_uids", reward_col: str = "answer_rewards", ntop: int = 20, uids: List[int] = None
|
270 |
) -> go.Figure:
|
|
|
298 |
barmode="group",
|
299 |
title="Dendrite Calls by UID",
|
300 |
color_continuous_scale="Blues",
|
301 |
+
opacity=0.35,
|
302 |
**plotly_config,
|
303 |
)
|
304 |
|
305 |
+
def plot_completion_length_time(
|
306 |
+
df: pd.DataFrame,
|
307 |
+
uid_col: str = "answer_uids",
|
308 |
+
completion_col: str = "answer_completions",
|
309 |
+
time_col: str = "answer_times",
|
310 |
+
words: bool = False,
|
311 |
+
) -> go.Figure:
|
312 |
+
|
313 |
+
df = df[[uid_col, completion_col, time_col]].explode(column=[uid_col, completion_col, time_col])
|
314 |
+
df["time"] = df[time_col].astype(float)
|
315 |
+
if words:
|
316 |
+
df["completion_length"] = df[completion_col].str.split().str.len()
|
317 |
+
else:
|
318 |
+
df["completion_length"] = df[completion_col].str.len()
|
319 |
+
|
320 |
+
return px.scatter(
|
321 |
+
df,
|
322 |
+
x='completion_length',
|
323 |
+
y='time',
|
324 |
+
labels={"completion_length": f"Completion Length, {'Words' if words else 'Characters'}", "time": "Time (s)"},
|
325 |
+
title=f"Completion Length vs Time, {'Words' if words else 'Characters'}",
|
326 |
+
marginal_x="histogram",
|
327 |
+
marginal_y="histogram",
|
328 |
+
hover_data=[uid_col, completion_col],
|
329 |
+
opacity=0.35,
|
330 |
+
**plotly_config,
|
331 |
+
)
|
332 |
+
|
333 |
|
334 |
def plot_network_embedding(
|
335 |
df: pd.DataFrame,
|
|
|
387 |
title=f"Graph for Top {ntop} Completion Similarities",
|
388 |
color_continuous_scale="BlueRed",
|
389 |
hover_data=["UID", "top_completions"],
|
390 |
+
opacity=0.35,
|
391 |
**plotly_config,
|
392 |
)
|