import streamlit as st from opendashboards.assets import io, inspect, metric, plot # dendrite time versus completion length # prompt-based completion score stats # instrospect specific RUN-UID-COMPLETION DEFAULT_PROJECT = "openvalidators" DEFAULT_FILTERS = {"tags": {"$in": ["1.0.0", "1.0.1", "1.0.2", "1.0.3", "1.0.4"]}} DEFAULT_SELECTED_RUNS = ['kt9bzxii'] DEFAULT_SRC = 'followup' DEFAULT_COMPLETION_NTOP = 10 DEFAULT_UID_NTOP = 10 # Set app config st.set_page_config( page_title='Validator Dashboard', menu_items={ 'Report a bug': "https://github.com/opentensor/dashboards/issues", 'About': """ This dashboard is part of the OpenTensor project. \n To see runs in wandb, go to: \n https://wandb.ai/opentensor-dev/openvalidators/table?workspace=default """ }, layout = "centered" ) st.title('Validator :red[Analysis] Dashboard :eyes:') # add vertical space st.markdown('#') st.markdown('#') # with st.sidebar: # st.sidebar.header('Pages') with st.spinner(text=f'Checking wandb...'): df_runs = io.load_runs(project=DEFAULT_PROJECT, filters=DEFAULT_FILTERS, min_steps=10) metric.wandb(df_runs) # add vertical space st.markdown('#') st.markdown('#') tab1, tab2, tab3, tab4 = st.tabs(["Wandb Runs", "UID Health", "Completions", "Prompt-based scoring"]) ### Wandb Runs ### with tab1: st.markdown('#') st.header(":violet[Wandb] Runs") run_msg = st.info("Select a single run or compare multiple runs") selected_runs = st.multiselect(f'Runs ({len(df_runs)})', df_runs.id, default=DEFAULT_SELECTED_RUNS, key='runs') # Load data if new runs selected if not selected_runs: # open a dialog to select runs run_msg.error("Please select at least one run") st.snow() st.stop() df = io.load_data(df_runs.loc[df_runs.id.isin(selected_runs)], load=True, save=True) df_long = inspect.explode_data(df) df_weights = inspect.weights(df) metric.runs(df, df_long, selected_runs) with st.expander(f'Show :violet[raw] data for {len(selected_runs)} selected runs'): inspect.run_event_data(df_runs,df, selected_runs) ### UID Health ### with tab2: st.markdown('#') st.header("UID :violet[Health]") st.info(f"Showing UID health metrics for **{len(selected_runs)} selected runs**") uid_src = st.radio('Select one:', ['followup', 'answer'], horizontal=True, key='uid_src') metric.uids(df_long, uid_src) with st.expander(f'Show UID **{uid_src}** weights data for **{len(selected_runs)} selected runs**'): uids = st.multiselect('UID:', sorted(df_long[f'{uid_src}_uids'].unique()), key='uid') st.markdown('#') st.subheader(f"UID {uid_src.title()} :violet[Weights]") plot.weights( df_weights, uids=uids, ) with st.expander(f'Show UID **{uid_src}** leaderboard data for **{len(selected_runs)} selected runs**'): st.markdown('#') st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]") uid_col1, uid_col2 = st.columns(2) uid_ntop = uid_col1.slider('Number of UIDs:', min_value=1, max_value=50, value=DEFAULT_UID_NTOP, key='uid_ntop') uid_agg = uid_col2.selectbox('Aggregation:', ('mean','min','max','size','nunique'), key='uid_agg') plot.leaderboard( df, ntop=uid_ntop, group_on=f'{uid_src}_uids', agg_col=f'{uid_src}_rewards', agg=uid_agg ) with st.expander(f'Show UID **{uid_src}** diversity data for **{len(selected_runs)} selected runs**'): st.markdown('#') st.subheader(f"UID {uid_src.title()} :violet[Diversity]") rm_failed = st.checkbox(f'Remove failed **{uid_src}** completions', value=True) plot.uid_diversty(df, rm_failed) ### Completions ### with tab3: st.markdown('#') st.subheader('Completion :violet[Leaderboard]') completion_info = st.empty() msg_col1, msg_col2 = st.columns(2) completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src') completion_info.info(f"Showing **{completion_src}** completions for **{len(selected_runs)} selected runs**") completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop') completion_col = f'{completion_src}_completions' reward_col = f'{completion_src}_rewards' uid_col = f'{completion_src}_uids' completions = inspect.completions(df_long, completion_col) # Get completions with highest average rewards plot.leaderboard( df, ntop=completion_ntop, group_on=completion_col, agg_col=reward_col, agg='mean', alias=True ) with st.expander(f'Show **{completion_src}** completion rewards data for **{len(selected_runs)} selected runs**'): st.markdown('#') st.subheader('Completion :violet[Rewards]') completion_select = st.multiselect('Completions:', completions.index, default=completions.index[:3].tolist()) # completion_regex = st.text_input('Completion regex:', value='', key='completion_regex') plot.completion_rewards( df, completion_col=completion_col, reward_col=reward_col, uid_col=uid_col, ntop=completion_ntop, completions=completion_select, ) ### Prompt-based scoring ### with tab4: # coming soon st.info('Prompt-based scoring coming soon') # st.dataframe(df_long_long.filter(regex=prompt_src).head())