import streamlit as st import pandas as pd import opendashboards.utils.utils as utils def clean_data(df): return df.dropna(subset=df.filter(regex='completions|rewards').columns, how='all') @st.cache_data def explode_data(df): list_cols = utils.get_list_col_lengths(df) try: return utils.explode_data(df, list(list_cols.keys())).apply(pd.to_numeric, errors='ignore') except Exception as e: st.error(f'Error exploding data with columns') st.write(list_cols) st.exception(e) st.dataframe(df) st.stop() @st.cache_data def completions(df_long, col): return df_long[col].value_counts() @st.cache_data def weights(df, index='_timestamp'): # Create a column for each UID and show most recent rows scores = df['moving_averaged_scores'].apply(pd.Series).fillna(method='ffill') if index in df.columns: scores.index = df[index] # rename columns scores.rename({i: f'UID-{i}' for i in range(scores.shape[1])}, axis=1, inplace=True) return scores def run_event_data(df_runs, df, selected_runs): st.markdown('#') show_col1, show_col2 = st.columns(2) show_runs = show_col1.checkbox('Show runs', value=True) show_events = show_col2.checkbox('Show events', value=False) if show_runs: st.markdown(f'Wandb info for **{len(selected_runs)} selected runs**:') st.dataframe(df_runs.loc[df_runs.id.isin(selected_runs)], column_config={ "url": st.column_config.LinkColumn("URL"), } ) if show_events: st.markdown(f'Raw events for **{len(selected_runs)} selected runs**:') st.dataframe(df.head(50), column_config={ "url": st.column_config.LinkColumn("URL"), } ) def highlight_row(row, expr, color='lightgrey', bg_color='white'): return [f'background-color:{color}' if expr else f'background-color:{bg_color}'] * len(row)