import os import sys import argparse from traceback import print_exc import pickle import tqdm import pandas as pd from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor import torch import bittensor from meta_utils import load_metagraphs #TODO: make line charts and other cool stuff for each metagraph snapshot def process(block, netuid=1, lite=True, difficulty=False, prune_weights=False, return_graph=False, half=True, subtensor=None): if subtensor is None: subtensor = bittensor.subtensor(network='finney') try: metagraph = subtensor.metagraph(block=block, netuid=netuid, lite=lite) if difficulty: metagraph.difficulty = subtensor.difficulty(block=block, netuid=netuid) if not lite: if half: metagraph.weights = torch.nn.Parameter(metagraph.weights.half(), requires_grad=False) if prune_weights: metagraph.weights = metagraph.weights[metagraph.weights.sum(axis=1) > 0] with open(f'data/metagraph/{netuid}/{block}.pkl', 'wb') as f: pickle.dump(metagraph, f) return metagraph if return_graph else True except Exception as e: print(f'Error processing block {block}: {e}') def parse_arguments(): parser = argparse.ArgumentParser(description='Process metagraphs for a given network.') parser.add_argument('--netuid', type=int, default=1, help='Network UID to use.') parser.add_argument('--difficulty', action='store_true', help='Include difficulty in metagraph.') parser.add_argument('--prune_weights', action='store_true', help='Prune weights in metagraph.') parser.add_argument('--return_graph', action='store_true', help='Return metagraph instead of True.') parser.add_argument('--no_dataframe', action='store_true', help='Do not create dataframe.') parser.add_argument('--max_workers', type=int, default=32, help='Max workers to use.') parser.add_argument('--start_block', type=int, default=1_500_000, help='Start block.') parser.add_argument('--end_block', type=int, default=600_000, help='End block.') parser.add_argument('--step_size', type=int, default=100, help='Step size.') return parser.parse_args() if __name__ == '__main__': subtensor = bittensor.subtensor(network='finney') print(f'Current block: {subtensor.block}') args = parse_arguments() netuid=args.netuid difficulty=args.difficulty overwrite=False return_graph=args.return_graph step_size = args.step_size start_block = args.start_block start_block = (min(subtensor.block, start_block)//step_size)*step_size # round to nearest step_size end_block = args.end_block blocks = range(start_block, end_block, -step_size) # only get weights for multiple of 500 blocks lite=lambda x: x%500!=0 max_workers = min(args.max_workers, len(blocks)) datadir = f'data/metagraph/{netuid}' os.makedirs(datadir, exist_ok=True) if not overwrite: blocks = [block for block in blocks if not os.path.exists(f'data/metagraph/{netuid}/{block}.pkl')] metagraphs = [] if len(blocks)>0: print(f'Processing {len(blocks)} blocks from {blocks[0]}-{blocks[-1]} using {max_workers} workers.') with ProcessPoolExecutor(max_workers=max_workers) as executor: futures = [ executor.submit(process, block, lite=lite(block), netuid=netuid, difficulty=difficulty) for block in blocks ] success = 0 with tqdm.tqdm(total=len(futures)) as pbar: for block, future in zip(blocks,futures): try: metagraphs.append(future.result()) success += 1 except Exception as e: print(f'generated an exception: {print_exc(e)}') pbar.update(1) pbar.set_description(f'Processed {success} blocks. Current block: {block}') if not success: raise ValueError('No blocks were successfully processed.') print(f'Processed {success} blocks.') if return_graph: for metagraph in metagraphs: print(f'{metagraph.block}: {metagraph.n.item()} nodes, difficulty={getattr(metagraph, "difficulty", None)}, weights={metagraph.weights.shape if hasattr(metagraph, "weights") else None}') print(metagraphs[-1]) else: print(f'No blocks to process. Current block: {subtensor.block}') if not args.no_dataframe: save_path = f'data/metagraph/{netuid}/df.parquet' blocks = range(start_block, end_block, step_size) df_loaded = None if os.path.exists(save_path): df_loaded = pd.read_parquet(save_path) blocks = [block for block in blocks if block not in df_loaded.block.unique()] print(f'Loaded dataframe from {save_path!r}. {len(df_loaded)} rows. {len(blocks)} blocks to process.') if len(blocks)==0: print('No blocks to process.') sys.exit(0) df = load_metagraphs(blocks[0], blocks[-1], block_step=step_size, datadir=datadir) if df_loaded is not None: df = pd.concat([df, df_loaded], ignore_index=True) df.to_parquet(save_path) print(f'Saved dataframe to {save_path!r}')