Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,6 @@ roberta_model = AutoModelForMaskedLM.from_pretrained("roberta-large").to(device)
|
|
24 |
print(f'TrOCR and YOLO Models loaded on {device}')
|
25 |
|
26 |
|
27 |
-
-------------------------------------------------------
|
28 |
|
29 |
|
30 |
CONFIDENCE_THRESHOLD = 0.72
|
@@ -145,7 +144,6 @@ def inference(image_path, debug=False, return_texts='final'):
|
|
145 |
# image_path = "raw_dataset/g06-037h.png"
|
146 |
df, bounding_path, tokens, logits, gen_texts = inference(image_path, debug=False, return_texts='final_v2')
|
147 |
|
148 |
-
----------------------------------------------------------------
|
149 |
|
150 |
|
151 |
def get_new_logits(tokens):
|
@@ -174,7 +172,6 @@ for i, j in zip(indices[0], indices[1]):
|
|
174 |
new_logits = get_new_logits(tokens)
|
175 |
|
176 |
|
177 |
-
----------------------------------------------------------------
|
178 |
|
179 |
|
180 |
for i, j in zip(indices[0], indices[1]):
|
@@ -184,7 +181,7 @@ logits_flattened = slogits.reshape(-1, slogits.shape[-1])
|
|
184 |
processor.batch_decode([logits_flattened.argmax(-1)], skip_special_tokens=True)
|
185 |
|
186 |
|
187 |
-
|
188 |
|
189 |
|
190 |
def gradio_inference(image_path):
|
|
|
24 |
print(f'TrOCR and YOLO Models loaded on {device}')
|
25 |
|
26 |
|
|
|
27 |
|
28 |
|
29 |
CONFIDENCE_THRESHOLD = 0.72
|
|
|
144 |
# image_path = "raw_dataset/g06-037h.png"
|
145 |
df, bounding_path, tokens, logits, gen_texts = inference(image_path, debug=False, return_texts='final_v2')
|
146 |
|
|
|
147 |
|
148 |
|
149 |
def get_new_logits(tokens):
|
|
|
172 |
new_logits = get_new_logits(tokens)
|
173 |
|
174 |
|
|
|
175 |
|
176 |
|
177 |
for i, j in zip(indices[0], indices[1]):
|
|
|
181 |
processor.batch_decode([logits_flattened.argmax(-1)], skip_special_tokens=True)
|
182 |
|
183 |
|
184 |
+
|
185 |
|
186 |
|
187 |
def gradio_inference(image_path):
|