|
import torch.nn.functional as F |
|
|
|
|
|
SEED = 1 |
|
|
|
|
|
|
|
CLASSES = ( |
|
"Airplane", |
|
"Automobile", |
|
"Bird", |
|
"Cat", |
|
"Deer", |
|
"Dog", |
|
"Frog", |
|
"Horse", |
|
"Ship", |
|
"Truck", |
|
) |
|
|
|
SHUFFLE = True |
|
DATA_DIR = "../data" |
|
NUM_WORKERS = 4 |
|
PIN_MEMORY = True |
|
|
|
|
|
CRITERION = F.cross_entropy |
|
INPUT_SIZE = (3, 32, 32) |
|
NUM_CLASSES = 10 |
|
LEARNING_RATE = 0.001 |
|
WEIGHT_DECAY = 1e-4 |
|
BATCH_SIZE = 512 |
|
NUM_EPOCHS = 24 |
|
DROPOUT_PERCENTAGE = 0.05 |
|
LAYER_NORM = "bn" |
|
|
|
|
|
|
|
LRFINDER_END_LR = 0.1 |
|
LRFINDER_NUM_ITERATIONS = 50 |
|
LRFINDER_STEP_MODE = "exp" |
|
|
|
OCLR_DIV_FACTOR = 100 |
|
OCLR_FINAL_DIV_FACTOR = 100 |
|
OCLR_THREE_PHASE = False |
|
OCLR_ANNEAL_STRATEGY = "linear" |
|
|
|
|
|
|
|
ACCELERATOR = "cuda" |
|
PRECISION = 32 |
|
|
|
|
|
|
|
TRAINING_STAT_STORE = "Store/training_stats.csv" |
|
MODEL_SAVE_PATH = "Store/model.pth" |
|
PRED_STORE_PATH = "Store/pred_store.pth" |
|
EXAMPLE_IMG_PATH = "Store/examples/" |
|
|
|
|
|
|
|
NORM_CONF_MAT = True |
|
|