Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import query_index | |
import datasets | |
import sentence_transformers | |
def query(text, k=5): | |
model = sentence_transformers.SentenceTransformer( | |
"dangvantuan/sentence-camembert-large", device="cpu") | |
dataset = datasets.load_dataset("json", data_files=["./data/dataset.json"], split="train") | |
dataset.load_faiss_index("embeddings", "index.faiss") | |
query_embedding = model.encode(text) | |
_, retrieved_examples = dataset.get_nearest_examples( | |
"embeddings", | |
query_embedding, | |
k=k, | |
) | |
for text, start, end, title, url in zip( | |
retrieved_examples["text"], | |
retrieved_examples["start"], | |
retrieved_examples["end"], | |
retrieved_examples["title"], | |
retrieved_examples["url"], | |
): | |
start = start | |
end = end | |
print(f"title: {title}") | |
print(f"transcript: [{str(start)+' ====> '+str(end)}] {text}") | |
print(f"link: {url}") | |
print("*" * 10) | |
iface = gr.Interface( | |
fn=query, | |
inputs='text', | |
outputs='text', | |
examples=[["Qu'est ce qui t'a fait le plus progresser?"]] | |
) | |
iface.launch() |