ask-datagen / app.py
madoss's picture
Update app.py
bea0c91
raw
history blame
1.99 kB
import argparse
import logging
import datasets
import gradio as gr
import sentence_transformers
logging.disable(logging.CRITICAL)
model = sentence_transformers.SentenceTransformer(
"dangvantuan/sentence-camembert-large", device="cpu")
dataset = datasets.load_dataset("json", data_files=["./dataset.json"], split="train")
dataset.load_faiss_index("embeddings", "index.faiss")
def search(query, k=3):
query_embedding = model.encode(query)
_, retrieved_examples = dataset.get_nearest_examples(
"embeddings",
query_embedding,
k=int(k),
)
results = []
for text, start, end, title, url in zip(
retrieved_examples["text"],
retrieved_examples["start"],
retrieved_examples["end"],
retrieved_examples["title"],
retrieved_examples["url"],
):
start = start
end = end
result = {
"title": title,
"transcript": f"[{str(start)} ====> {str(end)}] {text}",
"link": url,
}
results.append(result)
return results
iface = gr.Interface(
fn=search,
inputs=[
gr.inputs.Textbox(
label="Query", placeholder="Type in a search query...", lines=3
),
gr.inputs.Number(
label="K",
default=3,
description="Number of results to return",
),
],
outputs=[
gr.outputs.Label(
label="Result 1", type="auto", default="Search results will appear here."
),
gr.outputs.Label(
label="Result 2", type="auto", default=""
),
gr.outputs.Link(
label="Result 3", type="auto", default=""
),
],
title="Camembert and Faiss-powered Search Engine",
description="Search through a dataset using Camembert and Faiss",
theme="default",
layout="vertical",
allow_flagging=False,
allow_screenshot=False,
allow_share=True,
allow_download=False
)
iface.launch()