File size: 4,424 Bytes
9451bf8
 
 
 
 
 
 
 
 
 
 
 
 
f6ea7e6
9451bf8
2924d00
 
 
 
 
 
 
9451bf8
2924d00
9451bf8
 
f6ea7e6
 
 
 
 
 
2924d00
9451bf8
2924d00
 
 
 
 
 
 
9451bf8
2924d00
9451bf8
 
 
2924d00
 
9451bf8
 
 
 
 
 
 
 
2924d00
be820dc
 
9451bf8
 
 
 
2924d00
9451bf8
 
 
be820dc
2924d00
9451bf8
be820dc
 
9451bf8
 
 
 
2924d00
9451bf8
 
 
be820dc
2924d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9451bf8
 
2924d00
9451bf8
 
 
2924d00
 
 
 
 
9451bf8
2924d00
 
 
9451bf8
f6ea7e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from briarmbg import BriaRMBG
from torch.hub import download_url_to_file
from huggingface_hub import hf_hub_download

# بررسی دسترسی به GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_name(0).startswith("A100") else torch.float16
if torch.cuda.is_available():
    print(f"✅ CUDA is available! GPU: {torch.cuda.get_device_name(0)}")
else:
    print("❌ No CUDA GPUs are available. Switching to CPU.")

# دانلود و بارگذاری مدل
model_path = './models/iclight_sd15_fc.safetensors'
if not os.path.exists(model_path):
    os.makedirs(os.path.dirname(model_path), exist_ok=True)
    hf_hub_download(
        repo_id='lllyasviel/ic-light',
        filename='iclight_sd15_fc.safetensors',
        local_dir='./models',
        local_dir_use_symlinks=False
    )

# بارگذاری مدل‌های مورد نیاز
sd15_name = 'stablediffusionapi/realistic-vision-v51'
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder").to(device=device, dtype=dtype)
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae").to(device=device, dtype=dtype)
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet").to(device=device, dtype=dtype)
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4").to(device=device, dtype=torch.float32)

# تنظیم پردازشگر توجه برای بهینه‌سازی عملکرد
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())

# تنظیم نمونه‌گیرها
scheduler = DPMSolverMultistepScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    algorithm_type="sde-dpmsolver++",
    use_karras_sigmas=True,
    steps_offset=1
)

# ساخت لوله‌های پردازش تصویر
t2i_pipe = StableDiffusionPipeline.from_pretrained(
    sd15_name,
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None,
    image_encoder=None
).to(device)

i2i_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    sd15_name,
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None,
    image_encoder=None
).to(device)

# پاک کردن کش حافظه GPU برای جلوگیری از خطای Out Of Memory
torch.cuda.empty_cache()

# توابع پردازش تصویر
def process_image(prompt: str, width: int, height: int, num_steps: int, guidance: float):
    rng = torch.Generator(device=device).manual_seed(42)
    result = t2i_pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_steps,
        guidance_scale=guidance,
        generator=rng
    ).images[0]
    return result

# راه‌اندازی رابط کاربری با Gradio
block = gr.Blocks()
with block:
    with gr.Row():
        gr.Markdown("## IC-Light - Image Processing")
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt")
            width = gr.Slider(256, 1024, value=512, step=64, label="Width")
            height = gr.Slider(256, 1024, value=640, step=64, label="Height")
            steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps")
            guidance = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="Guidance Scale")
            submit = gr.Button("Generate Image")
        with gr.Column():
            result_image = gr.Image(type="pil", label="Generated Image")
    
    submit.click(fn=process_image, inputs=[prompt, width, height, steps, guidance], outputs=result_image)

block.launch(server_name='0.0.0.0', server_port=7860)