mahemall commited on
Commit
4166b5e
·
verified ·
1 Parent(s): 4ed7f22

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -0
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import soundfile as sf # Import soundfile for audio file handling
3
+ import numpy as np
4
+ import gradio as gr
5
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
6
+
7
+ # Choose a suitable Kannada speech-to-text model from Hugging Face
8
+ model_name = "vasista22/whisper-kannada-tiny" # Replace with your preferred model
9
+
10
+ processor = Wav2Vec2Processor.from_pretrained(model_name)
11
+ model = Wav2Vec2ForCTC.from_pretrained(model_name)
12
+
13
+
14
+
15
+
16
+
17
+ def transcribe_kannada(audio_data):
18
+ """
19
+ Transcribes recorded Kannada audio using the specified Hugging Face model.
20
+
21
+ Args:
22
+ audio_data: A NumPy array representing the recorded audio data.
23
+
24
+ Returns:
25
+ The transcribed text in Kannada.
26
+ """
27
+
28
+ sampling_rate = 16000 # Assuming common speech sampling rate (adjust if needed)
29
+ audio_input = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt")
30
+
31
+ with torch.no_grad():
32
+ logits = model(**audio_input).logits
33
+ predicted_ids = torch.argmax(logits, dim=-1)
34
+ transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
35
+
36
+ return transcription
37
+
38
+ def record_and_transcribe(audio):
39
+ """
40
+ Records audio from the microphone, processes each channel independently (if applicable),
41
+ converts them to speech-to-text, and plays reversed audio.
42
+
43
+ Args:
44
+ audio: A tuple containing recorded audio information (multiple audio channels).
45
+
46
+ Returns:
47
+ A list of transcriptions (one for each channel), or a tuple with transcriptions and reversed audio.
48
+ """
49
+
50
+ transcriptions = []
51
+ for channel in audio:
52
+ # Process each audio channel (replace with your actual conversion logic)
53
+ audio_data = channel # Assuming no processing needed for individual channels
54
+ transcription = transcribe_kannada(audio_data)
55
+ transcriptions.append(transcription)
56
+
57
+ # ... (handle reversed audio if needed)
58
+
59
+ return transcriptions # Or a tuple with transcriptions and reversed audio
60
+
61
+
62
+
63
+ # input_audio = gr.Audio(
64
+ # sources=["microphone"],
65
+ # type="numpy", # Specify audio format as NumPy array
66
+ # normalization=" [-1, 1]", # Normalize audio data to -1 to 1 range for model compatibility
67
+ # label="Record Kannada Audio",
68
+ # )
69
+
70
+ input_audio = gr.Audio(
71
+ sources=["microphone"],
72
+ type="numpy", # Specify audio format as NumPy array
73
+ label="Record Kannada Audio",
74
+ )
75
+
76
+ text_output = gr.Textbox(label="Transcription (ಕನ್ನಡ)")
77
+ audio_output = gr.Audio(label="Reversed Audio (Optional)", type="numpy")
78
+
79
+ demo = gr.Interface(
80
+ fn=record_and_transcribe,
81
+ inputs=input_audio,
82
+ outputs=[text_output, audio_output],
83
+ description="Kannada Speech-to-Text and Reverse Audio",
84
+ )
85
+
86
+
87
+ if __name__ == "__main__":
88
+ demo.launch(share=True)