Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import soundfile as sf # Import soundfile for audio file handling
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
6 |
+
|
7 |
+
# Choose a suitable Kannada speech-to-text model from Hugging Face
|
8 |
+
model_name = "vasista22/whisper-kannada-tiny" # Replace with your preferred model
|
9 |
+
|
10 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
11 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
def transcribe_kannada(audio_data):
|
18 |
+
"""
|
19 |
+
Transcribes recorded Kannada audio using the specified Hugging Face model.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
audio_data: A NumPy array representing the recorded audio data.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
The transcribed text in Kannada.
|
26 |
+
"""
|
27 |
+
|
28 |
+
sampling_rate = 16000 # Assuming common speech sampling rate (adjust if needed)
|
29 |
+
audio_input = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt")
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
logits = model(**audio_input).logits
|
33 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
34 |
+
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
return transcription
|
37 |
+
|
38 |
+
def record_and_transcribe(audio):
|
39 |
+
"""
|
40 |
+
Records audio from the microphone, processes each channel independently (if applicable),
|
41 |
+
converts them to speech-to-text, and plays reversed audio.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
audio: A tuple containing recorded audio information (multiple audio channels).
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
A list of transcriptions (one for each channel), or a tuple with transcriptions and reversed audio.
|
48 |
+
"""
|
49 |
+
|
50 |
+
transcriptions = []
|
51 |
+
for channel in audio:
|
52 |
+
# Process each audio channel (replace with your actual conversion logic)
|
53 |
+
audio_data = channel # Assuming no processing needed for individual channels
|
54 |
+
transcription = transcribe_kannada(audio_data)
|
55 |
+
transcriptions.append(transcription)
|
56 |
+
|
57 |
+
# ... (handle reversed audio if needed)
|
58 |
+
|
59 |
+
return transcriptions # Or a tuple with transcriptions and reversed audio
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
# input_audio = gr.Audio(
|
64 |
+
# sources=["microphone"],
|
65 |
+
# type="numpy", # Specify audio format as NumPy array
|
66 |
+
# normalization=" [-1, 1]", # Normalize audio data to -1 to 1 range for model compatibility
|
67 |
+
# label="Record Kannada Audio",
|
68 |
+
# )
|
69 |
+
|
70 |
+
input_audio = gr.Audio(
|
71 |
+
sources=["microphone"],
|
72 |
+
type="numpy", # Specify audio format as NumPy array
|
73 |
+
label="Record Kannada Audio",
|
74 |
+
)
|
75 |
+
|
76 |
+
text_output = gr.Textbox(label="Transcription (ಕನ್ನಡ)")
|
77 |
+
audio_output = gr.Audio(label="Reversed Audio (Optional)", type="numpy")
|
78 |
+
|
79 |
+
demo = gr.Interface(
|
80 |
+
fn=record_and_transcribe,
|
81 |
+
inputs=input_audio,
|
82 |
+
outputs=[text_output, audio_output],
|
83 |
+
description="Kannada Speech-to-Text and Reverse Audio",
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
demo.launch(share=True)
|