arabic-asr / app.py
maher13's picture
Update app.py
0fce504
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import soundfile as sf
import torch
import gradio as gr
import torchaudio
# load model and processor
processor = Wav2Vec2Processor.from_pretrained("maher13/arabic-iti")
model = Wav2Vec2ForCTC.from_pretrained("maher13/arabic-iti").eval()
# define function to read in sound file
def map_to_array(file):
speech, sr = torchaudio.load(file)
if sr != 16000:
transform = torchaudio.transforms.Resample(orig_freq=sr,
new_freq=16000)
speech= transform(speech)
speech = speech[0]
speech = speech.numpy()
return speech
# tokenize
def inference(audio_file, audio_file2):
if audio_file:
input_values = processor(map_to_array(audio_file.name), return_tensors="pt", padding="longest").input_values # Batch size 1
logits = model(input_values).logits
with torch.no_grad():
predicted_ids = torch.argmax(logits, dim=-1)
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id
transcription1 = processor.tokenizer.batch_decode(predicted_ids)[0]
else:
transcription1 = "N/A"
if audio_file2:
input_values = processor(map_to_array(audio_file2.name), return_tensors="pt", padding="longest").input_values # Batch size 1
logits = model(input_values).logits
with torch.no_grad():
predicted_ids = torch.argmax(logits, dim=-1)
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id
transcription2 = processor.tokenizer.batch_decode(predicted_ids)[0]
else :
transcription2 = "N/A"
return transcription1, transcription2
gradio_ui = gr.Interface(
fn=inference,
title="Speech to Text Graduation project \n sponsored by TensorGraph",
inputs=
[
gr.inputs.Audio(source = 'microphone', type="file", optional = True),
gr.inputs.Audio(source = 'upload', type="file", optional = True)
],
outputs=[
gr.outputs.Textbox(label="Auto-Transcript"),
gr.outputs.Textbox(label="Auto-Transcript")
],
)
gradio_ui.launch(share=True)