Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,22 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
import torch
|
4 |
-
import
|
5 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
6 |
-
import numpy as np
|
7 |
|
|
|
|
|
8 |
processor = Wav2Vec2Processor.from_pretrained("maher13/arabic-iti")
|
9 |
model = Wav2Vec2ForCTC.from_pretrained("maher13/arabic-iti").eval()
|
10 |
-
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
if audio_file :
|
15 |
-
wav, sr = librosa.load(audio_file.name, sr=16000)
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
with torch.no_grad():
|
21 |
predicted_ids = torch.argmax(logits, dim=-1)
|
@@ -23,11 +24,9 @@ def asr_transcript(audio_file, audio_file2):
|
|
23 |
transcription1 = processor.tokenizer.batch_decode(predicted_ids)[0]
|
24 |
else:
|
25 |
transcription1 = "N/A"
|
26 |
-
|
27 |
-
if audio_file2
|
28 |
-
|
29 |
-
|
30 |
-
input_values = processor(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values
|
31 |
logits = model(input_values).logits
|
32 |
|
33 |
with torch.no_grad():
|
@@ -36,9 +35,11 @@ def asr_transcript(audio_file, audio_file2):
|
|
36 |
transcription2 = processor.tokenizer.batch_decode(predicted_ids)[0]
|
37 |
else :
|
38 |
transcription2 = "N/A"
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
gradio_ui = gr.Interface(
|
43 |
fn=asr_transcript,
|
44 |
title="Speech to Text Graduation project \n sponsored by TensorGraph",
|
@@ -52,9 +53,4 @@ gradio_ui = gr.Interface(
|
|
52 |
gr.outputs.Textbox(label="Auto-Transcript")
|
53 |
],
|
54 |
)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
#gradio_ui.launch(share=True)
|
59 |
-
gradio_ui.launch(share=True)
|
60 |
-
|
|
|
1 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
2 |
+
import soundfile as sf
|
3 |
import torch
|
4 |
+
import gradio as gr
|
|
|
|
|
5 |
|
6 |
+
|
7 |
+
# load model and processor
|
8 |
processor = Wav2Vec2Processor.from_pretrained("maher13/arabic-iti")
|
9 |
model = Wav2Vec2ForCTC.from_pretrained("maher13/arabic-iti").eval()
|
10 |
+
# define function to read in sound file
|
11 |
+
def map_to_array(file):
|
12 |
+
speech, _ = sf.read(file)
|
13 |
+
return speech
|
|
|
|
|
14 |
|
15 |
+
# tokenize
|
16 |
+
def inference(audio_file, audio_file2):
|
17 |
+
if audio_file:
|
18 |
+
input_values = processor(map_to_array(audio_file.name), return_tensors="pt", padding="longest").input_values # Batch size 1
|
19 |
+
logits = model(input_values).logits
|
20 |
|
21 |
with torch.no_grad():
|
22 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
24 |
transcription1 = processor.tokenizer.batch_decode(predicted_ids)[0]
|
25 |
else:
|
26 |
transcription1 = "N/A"
|
27 |
+
|
28 |
+
if audio_file2:
|
29 |
+
input_values = processor(map_to_array(audio_file2.name), return_tensors="pt", padding="longest").input_values # Batch size 1
|
|
|
|
|
30 |
logits = model(input_values).logits
|
31 |
|
32 |
with torch.no_grad():
|
|
|
35 |
transcription2 = processor.tokenizer.batch_decode(predicted_ids)[0]
|
36 |
else :
|
37 |
transcription2 = "N/A"
|
38 |
+
|
39 |
+
|
40 |
+
return transcription1, transcription2
|
41 |
+
|
42 |
+
|
43 |
gradio_ui = gr.Interface(
|
44 |
fn=asr_transcript,
|
45 |
title="Speech to Text Graduation project \n sponsored by TensorGraph",
|
|
|
53 |
gr.outputs.Textbox(label="Auto-Transcript")
|
54 |
],
|
55 |
)
|
56 |
+
gradio_ui.launch(share=True)
|
|
|
|
|
|
|
|
|
|