Spaces:
Runtime error
Runtime error
Upload app
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""2-Copy1.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1UkxKUpI5tPpdFrJIUFWSlk4LlD75Qgf6
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install -q gradio
|
11 |
+
!pip install transformers
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
import librosa
|
15 |
+
import torch
|
16 |
+
import torchaudio
|
17 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
processor = Wav2Vec2Processor.from_pretrained("maher13/arabic-iti")
|
21 |
+
model = Wav2Vec2ForCTC.from_pretrained("maher13/arabic-iti").eval()
|
22 |
+
|
23 |
+
def asr_transcript(audio_file, audio_file2):
|
24 |
+
transcript = ""
|
25 |
+
|
26 |
+
if audio_file :
|
27 |
+
wav, sr = librosa.load(audio_file.name, sr=16000)
|
28 |
+
|
29 |
+
input_values = processor(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values
|
30 |
+
logits = model(input_values).logits
|
31 |
+
|
32 |
+
with torch.no_grad():
|
33 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
34 |
+
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id
|
35 |
+
transcription1 = processor.tokenizer.batch_decode(predicted_ids)[0]
|
36 |
+
else:
|
37 |
+
transcription1 = "N/A"
|
38 |
+
|
39 |
+
if audio_file2 :
|
40 |
+
wav, sr = librosa.load(audio_file2.name, sr=16000)
|
41 |
+
|
42 |
+
input_values = processor(wav, sampling_rate=16000, return_tensors="pt", padding=True).input_values
|
43 |
+
logits = model(input_values).logits
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
47 |
+
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id
|
48 |
+
transcription2 = processor.tokenizer.batch_decode(predicted_ids)[0]
|
49 |
+
else :
|
50 |
+
transcription2 = "N/A"
|
51 |
+
|
52 |
+
return transcription1, transcription2
|
53 |
+
|
54 |
+
gradio_ui = gr.Interface(
|
55 |
+
fn=asr_transcript,
|
56 |
+
title="Speech to Text Graduation project \n sponsored by TensorGraph",
|
57 |
+
inputs=
|
58 |
+
[
|
59 |
+
gr.inputs.Audio(source = 'microphone', type="file", optional = True),
|
60 |
+
gr.inputs.Audio(source = 'upload', type="file", optional = True)
|
61 |
+
],
|
62 |
+
outputs=[
|
63 |
+
gr.outputs.Textbox(label="Auto-Transcript"),
|
64 |
+
gr.outputs.Textbox(label="Auto-Transcript")
|
65 |
+
],
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
#gradio_ui.launch(share=True)
|
71 |
+
gradio_ui.launch(share=True)
|
72 |
+
|