Upload 2 files
Browse files- app.py +88 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import tempfile
|
6 |
+
import easyocr
|
7 |
+
import re
|
8 |
+
|
9 |
+
|
10 |
+
# Load the pre-trained English OCR model and tokenizer
|
11 |
+
@st.cache_resource
|
12 |
+
def load_english_model():
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
14 |
+
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
15 |
+
model = model.eval()
|
16 |
+
return tokenizer, model
|
17 |
+
|
18 |
+
# Load the multilingual OCR model (EasyOCR) for both Hindi and English
|
19 |
+
@st.cache_resource
|
20 |
+
def load_multilingual_model():
|
21 |
+
reader = easyocr.Reader(['en', 'hi'])
|
22 |
+
return reader
|
23 |
+
|
24 |
+
st.title('OCR Web App')
|
25 |
+
|
26 |
+
if 'ocr_result' not in st.session_state:
|
27 |
+
st.session_state['ocr_result'] = ""
|
28 |
+
|
29 |
+
# Function to highlight the search word in the OCR results
|
30 |
+
def highlight_text(text, search_query):
|
31 |
+
if not search_query:
|
32 |
+
return text
|
33 |
+
highlighted = re.sub(f"({re.escape(search_query)})", r'<mark>\1</mark>', text, flags=re.IGNORECASE)
|
34 |
+
return highlighted
|
35 |
+
|
36 |
+
# Create a two-column layout
|
37 |
+
left_column, right_column = st.columns([1, 2])
|
38 |
+
|
39 |
+
with left_column:
|
40 |
+
language = st.selectbox("Select Language", ["English", "Hindi + English"])
|
41 |
+
|
42 |
+
predict_button = st.button('Predict')
|
43 |
+
|
44 |
+
# Search functionality after results
|
45 |
+
search_query = st.text_input("Search in results")
|
46 |
+
search_button = st.button('Search')
|
47 |
+
|
48 |
+
# Display search results by highlighting the searched word
|
49 |
+
if search_button and st.session_state['ocr_result']:
|
50 |
+
if search_query.lower() in st.session_state['ocr_result'].lower():
|
51 |
+
st.success(f"'{search_query}' found in the OCR results!")
|
52 |
+
else:
|
53 |
+
st.error(f"'{search_query}' not found in the OCR results.")
|
54 |
+
|
55 |
+
with right_column:
|
56 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
57 |
+
|
58 |
+
if uploaded_file is not None:
|
59 |
+
image = Image.open(uploaded_file)
|
60 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
61 |
+
|
62 |
+
img_format = image.format if image.format is not None else "JPEG"
|
63 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{img_format.lower()}") as tmp_file:
|
64 |
+
img_path = tmp_file.name
|
65 |
+
image.save(img_path, format=img_format)
|
66 |
+
|
67 |
+
# Perform OCR when the Predict button is clicked
|
68 |
+
if predict_button:
|
69 |
+
if language == "English":
|
70 |
+
tokenizer, model = load_english_model()
|
71 |
+
with st.spinner('Processing English OCR...'):
|
72 |
+
res = model.chat(tokenizer, img_path, ocr_type='ocr')
|
73 |
+
st.session_state['ocr_result'] = res
|
74 |
+
st.write("OCR Result (English):")
|
75 |
+
st.write(st.session_state['ocr_result'], unsafe_allow_html=True)
|
76 |
+
|
77 |
+
elif language == "Hindi + English":
|
78 |
+
reader = load_multilingual_model()
|
79 |
+
with st.spinner('Processing Hindi + English OCR...'):
|
80 |
+
result = reader.readtext(img_path, detail=0)
|
81 |
+
st.session_state['ocr_result'] = " ".join(result)
|
82 |
+
st.write("OCR Result (Hindi + English):")
|
83 |
+
st.write(st.session_state['ocr_result'], unsafe_allow_html=True)
|
84 |
+
|
85 |
+
if st.session_state['ocr_result']:
|
86 |
+
highlighted_result = highlight_text(st.session_state['ocr_result'], search_query)
|
87 |
+
st.write("Highlighted OCR Result:")
|
88 |
+
st.markdown(highlighted_result, unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.25.0
|
2 |
+
transformers==4.37.2
|
3 |
+
torch==2.0.1
|
4 |
+
torchvision==0.15.2
|
5 |
+
Pillow
|
6 |
+
easyocr==1.7.0
|
7 |
+
tiktoken
|
8 |
+
verovio
|
9 |
+
accelerate==0.28.0
|