Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
import os | |
import numpy as np | |
import trimesh | |
import mcubes | |
from torchvision.utils import save_image | |
from PIL import Image | |
from transformers import AutoModel, AutoConfig | |
from rembg import remove, new_session | |
from functools import partial | |
from kiui.op import recenter | |
import kiui | |
# we load the pre-trained model from HF | |
class LRMGeneratorWrapper: | |
def __init__(self): | |
self.config = AutoConfig.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True) | |
self.model = AutoModel.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True) | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.model.to(self.device) | |
self.model.eval() | |
def forward(self, image, camera): | |
return self.model(image, camera) | |
model_wrapper = LRMGeneratorWrapper() | |
def preprocess_image(image, source_size): | |
session = new_session("isnet-general-use") | |
rembg_remove = partial(remove, session=session) | |
image = np.array(image) | |
image = rembg_remove(image) | |
mask = rembg_remove(image, only_mask=True) | |
image = recenter(image, mask, border_ratio=0.20) | |
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0 | |
if image.shape[1] == 4: | |
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) | |
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True) | |
image = torch.clamp(image, 0, 1) | |
return image | |
#Ref: https://github.com/jadechoghari/vfusion3d/blob/main/lrm/inferrer.py | |
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=True): | |
image = preprocess_image(image, source_size).to(model_wrapper.device) | |
# TODO: make sure source_camero have the right shape and value | |
source_camera = torch.tensor([[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]], dtype=torch.float32).to(model_wrapper.device) | |
render_camera = torch.tensor([[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]], dtype=torch.float32).to(model_wrapper.device) | |
with torch.no_grad(): | |
planes = model_wrapper.forward(image, source_camera) | |
if export_mesh: | |
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size) | |
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0) | |
vtx = vtx / (mesh_size - 1) * 2 - 1 | |
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0) | |
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() | |
vtx_colors = (vtx_colors * 255).astype(np.uint8) | |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) | |
mesh_path = "awesome_mesh.obj" | |
mesh.export(mesh_path, 'obj') | |
return mesh_path | |
# TODO: instead of outputting .obj file -> directly output a 3d model | |
def gradio_interface(image): | |
mesh_file = generate_mesh(image) | |
print("Generated Mesh File Path:", mesh_file) | |
return mesh_file | |
gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Image(type="pil", label="Input Image"), | |
outputs=gr.File(label="Awesome 3D Mesh (.obj)"), | |
title="3D Mesh Generator by FacebookAI", | |
description="Upload an image and generate a 3D mesh (.obj) file using VFusion3D by FacebookAI" | |
).launch() |