jadechoghari's picture
Create app.py
7cbe23c verified
raw
history blame
3.49 kB
import torch
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
from torchvision.utils import save_image
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
# we load the pre-trained model from HF
class LRMGeneratorWrapper:
def __init__(self):
self.config = AutoConfig.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True)
self.model = AutoModel.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self.model.eval()
def forward(self, image, camera):
return self.model(image, camera)
model_wrapper = LRMGeneratorWrapper()
def preprocess_image(image, source_size):
session = new_session("isnet-general-use")
rembg_remove = partial(remove, session=session)
image = np.array(image)
image = rembg_remove(image)
mask = rembg_remove(image, only_mask=True)
image = recenter(image, mask, border_ratio=0.20)
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
if image.shape[1] == 4:
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
image = torch.clamp(image, 0, 1)
return image
#Ref: https://github.com/jadechoghari/vfusion3d/blob/main/lrm/inferrer.py
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=True):
image = preprocess_image(image, source_size).to(model_wrapper.device)
# TODO: make sure source_camero have the right shape and value
source_camera = torch.tensor([[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]], dtype=torch.float32).to(model_wrapper.device)
render_camera = torch.tensor([[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]], dtype=torch.float32).to(model_wrapper.device)
with torch.no_grad():
planes = model_wrapper.forward(image, source_camera)
if export_mesh:
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
mesh_path = "awesome_mesh.obj"
mesh.export(mesh_path, 'obj')
return mesh_path
# TODO: instead of outputting .obj file -> directly output a 3d model
def gradio_interface(image):
mesh_file = generate_mesh(image)
print("Generated Mesh File Path:", mesh_file)
return mesh_file
gr.Interface(
fn=gradio_interface,
inputs=gr.Image(type="pil", label="Input Image"),
outputs=gr.File(label="Awesome 3D Mesh (.obj)"),
title="3D Mesh Generator by FacebookAI",
description="Upload an image and generate a 3D mesh (.obj) file using VFusion3D by FacebookAI"
).launch()