import torch import gradio as gr import os import numpy as np import trimesh import mcubes from torchvision.utils import save_image from PIL import Image from transformers import AutoModel, AutoConfig from rembg import remove, new_session from functools import partial from kiui.op import recenter import kiui # we load the pre-trained model from HF class LRMGeneratorWrapper: def __init__(self): self.config = AutoConfig.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True) self.model = AutoModel.from_pretrained("jadechoghari/custom-llrm", trust_remote_code=True) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(self.device) self.model.eval() def forward(self, image, camera): return self.model(image, camera) model_wrapper = LRMGeneratorWrapper() def preprocess_image(image, source_size): session = new_session("isnet-general-use") rembg_remove = partial(remove, session=session) image = np.array(image) image = rembg_remove(image) mask = rembg_remove(image, only_mask=True) image = recenter(image, mask, border_ratio=0.20) image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0 if image.shape[1] == 4: image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True) image = torch.clamp(image, 0, 1) return image #Ref: https://github.com/jadechoghari/vfusion3d/blob/main/lrm/inferrer.py def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=True): image = preprocess_image(image, source_size).to(model_wrapper.device) # TODO: make sure source_camero have the right shape and value source_camera = torch.tensor([[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]], dtype=torch.float32).to(model_wrapper.device) render_camera = torch.tensor([[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]], dtype=torch.float32).to(model_wrapper.device) with torch.no_grad(): planes = model_wrapper.forward(image, source_camera) if export_mesh: grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size) vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0) vtx = vtx / (mesh_size - 1) * 2 - 1 vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0) vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() vtx_colors = (vtx_colors * 255).astype(np.uint8) mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) mesh_path = "awesome_mesh.obj" mesh.export(mesh_path, 'obj') return mesh_path # TODO: instead of outputting .obj file -> directly output a 3d model def gradio_interface(image): mesh_file = generate_mesh(image) print("Generated Mesh File Path:", mesh_file) return mesh_file gr.Interface( fn=gradio_interface, inputs=gr.Image(type="pil", label="Input Image"), outputs=gr.File(label="Awesome 3D Mesh (.obj)"), title="3D Mesh Generator by FacebookAI", description="Upload an image and generate a 3D mesh (.obj) file using VFusion3D by FacebookAI" ).launch()