import streamlit as st from backend_model import load_model_and_tokenizer, infer_single_sample java_model_architecture = 'microsoft/graphcodebert-base' java_model_path = 'models/java_classifier.pth' python_model_architecture = 'microsoft/graphcodebert-base' python_model_path = 'models/python_classifier.pth' @st.cache_resource def load_model(arch, path): return load_model_and_tokenizer(arch, path) st.title('LLM Sniffer') # form with st.form(key='my_form'): # select language - java or python language = st.selectbox( label="Select Language", options=["Java", "Python"], key="language" ) # text area code = st.text_area(label="", value="", label_visibility="hidden", height=300, placeholder="Paste your code here", key="code") # submit button submit_button = st.form_submit_button(label='Submit') if submit_button: if code: if language == "Java": model, tokenizer = load_model(java_model_architecture, java_model_path) else: model, tokenizer = load_model(python_model_architecture, python_model_path) result = infer_single_sample( code_text=code, model=model, tokenizer=tokenizer, language=language ) st.write(result)