Spaces:
No application file
No application file
Create app
Browse files
app
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
|
4 |
+
# Load the pre-trained model (Pipeline with vectorizer and classifier)
|
5 |
+
model = joblib.load('text_classification_pipeline.pkl')
|
6 |
+
|
7 |
+
# Title of the Streamlit app
|
8 |
+
st.title("Tweet Sentiment Classifier")
|
9 |
+
|
10 |
+
# Input text area for user to enter a tweet
|
11 |
+
tweet = st.text_area("Enter the tweet")
|
12 |
+
|
13 |
+
# Button for triggering the prediction
|
14 |
+
if st.button("Predict Sentiment"):
|
15 |
+
if tweet:
|
16 |
+
# Use the model to predict the sentiment of the tweet
|
17 |
+
prediction = model.predict([tweet])
|
18 |
+
|
19 |
+
# Display the prediction
|
20 |
+
st.write(f"Predicted Sentiment Label: {prediction[0]}")
|
21 |
+
else:
|
22 |
+
st.write("Please enter a tweet to classify.")
|