import streamlit as st import google.generativeai as genai import os os.environ["google_API_KEY"] = 'AIzaSyAGB5JvQRItM2CeZjLhJp-KKljxfuPBOzo' genai.configure(api_key=os.getenv("google_API_KEY")) model = genai.GenerativeModel('gemini-pro') chat = model.start_chat(history=[]) def get_gemini_response(question, gender, age, weight, height, activity_level, goals, dietary_restrictions): text = f'Act as a fitness trainer and give a short but to the point answer according to the given information that I am {age} years old {gender}, my weight is {weight} kg, my height is {height}cm, i am {activity_level}, my goal is to {goals} and i am {dietary_restrictions}. my question is that {question}' response =chat.send_message(text,stream=True) return response st.set_page_config(page_title="Fitness AI ChatBot", page_icon="🏋️‍♀️") st.title("🔹🔷Fitee🔷🔹") st.write("Made with ❤️ by Mainak") with st.sidebar: gender = st.selectbox("Gender", ["male", "female"]) age = st.number_input("Age", min_value=0, max_value=150, value=30) weight = st.number_input("Weight (kg)", min_value=0.0, step=1.0, value=70.0) height = st.number_input("Height (cm)", min_value=0.0,step=1.0, value=170.0) activity_level = st.selectbox("Activity Level", ["Sedentary", "Lightly Active", "Moderately Active", "Very Active"]) goals = st.radio("Goals", ["Loss Weight", "Maintain Weight", "Gain Weight"]) dietary_restrictions = st.multiselect("Dietary Restrictions", ["Vegetarian", "Vegan", "Gluten-Free", "Dairy-Free"]) if 'button_pressed' not in st.session_state: st.session_state.button_pressed = False # Button to start conversation start_conversation = st.button("Start Conversation") if start_conversation or st.session_state.button_pressed: st.session_state.button_pressed = True if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("What is up?"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) if prompt is None: response='Ask me anything about Fitness' else: with st.spinner('Typping...'): re = get_gemini_response(str(prompt), gender, age, weight, height, activity_level, goals, dietary_restrictions) response = '' for chunk in re: for ch in chunk.text.split(' '): response += ch + ' ' # res = [] # for chunk in re: # res.append(chunk.text) # st.write(chunk.text) # print("_"*80) # re = re["output_text"] # re=return_response(str(prompt),document_search,chain) # response = re # Display assistant response in chat message container with st.chat_message("assistant"): if type(response)==str: st.markdown(response) st.session_state.messages.append({"role": "assistant", "content": response}) else: st.markdown(response) st.session_state.messages.append({"role": "assistant", "content": response})