Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,89 @@
|
|
1 |
from PyPDF2 import PdfReader
|
2 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
3 |
-
from langchain.text_splitter import CharacterTextSplitter
|
4 |
from langchain.vectorstores import FAISS
|
5 |
from langchain.chains.question_answering import load_qa_chain
|
6 |
from langchain.chains import load_chain
|
7 |
from langchain.llms import OpenAI
|
8 |
import streamlit as st
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
import os, shutil
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def delete_directory(directory_path):
|
13 |
try:
|
14 |
shutil.rmtree(directory_path)
|
@@ -16,60 +91,52 @@ def delete_directory(directory_path):
|
|
16 |
except Exception as e:
|
17 |
print(f"Error deleting directory '{directory_path}': {e}")
|
18 |
|
19 |
-
st.set_page_config(page_title="Query any Pdf", page_icon="📄")
|
20 |
-
|
21 |
-
st.title("📄 PDF Query Bot 📄")
|
22 |
-
st.write("Made with ❤️ by Mainak")
|
23 |
-
|
24 |
def return_response(query,document_search,chain):
|
25 |
query = query
|
26 |
docs = document_search.similarity_search(query)
|
27 |
result = chain.run(input_documents=docs, question=query)
|
28 |
return result
|
29 |
|
30 |
-
uploaded_file = st.file_uploader("Upload a PDF File", type=["pdf"])
|
31 |
|
32 |
-
# API key input box
|
33 |
-
api_key = st.text_input("Enter Your OpenAI API Key",type="password")
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
try:
|
37 |
delete_directory('faiss_index')
|
38 |
except:
|
39 |
pass
|
40 |
-
|
41 |
-
if st.button('Submit'):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if content:
|
53 |
-
raw_text += content
|
54 |
-
|
55 |
-
text_splitter = CharacterTextSplitter(
|
56 |
-
separator = "\n",
|
57 |
-
chunk_size = 800,
|
58 |
-
chunk_overlap = 200,
|
59 |
-
length_function = len,
|
60 |
-
)
|
61 |
-
texts = text_splitter.split_text(raw_text)
|
62 |
-
embeddings = OpenAIEmbeddings()
|
63 |
-
document_search = FAISS.from_texts(texts, embeddings)
|
64 |
-
document_search.save_local("faiss_index")
|
65 |
else:
|
66 |
-
st.warning("Please enter your
|
67 |
-
|
68 |
-
st.warning("Please enter your API key")
|
69 |
if os.path.exists("faiss_index"):
|
70 |
-
# if st.checkbox("chat"):
|
71 |
if api_key:
|
72 |
-
if
|
73 |
if "messages" not in st.session_state:
|
74 |
st.session_state.messages = []
|
75 |
|
@@ -83,18 +150,14 @@ if os.path.exists("faiss_index"):
|
|
83 |
st.markdown(prompt)
|
84 |
# Add user message to chat history
|
85 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
86 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
87 |
-
embeddings = OpenAIEmbeddings()
|
88 |
-
document_search = FAISS.load_local("faiss_index", embeddings)
|
89 |
-
chain = load_qa_chain(OpenAI(), chain_type="stuff")
|
90 |
if prompt is None:
|
91 |
re='Ask me anything about the pdf'
|
92 |
-
# elif prompt=='exit':
|
93 |
-
# delete_directory('faiss_index')
|
94 |
-
# pyautogui.hotkey('f5') #Simulates F5 key press = page refresh
|
95 |
else:
|
96 |
with st.spinner('Typping...'):
|
97 |
-
re=
|
|
|
|
|
98 |
response = f"PDF Mate: {re}"
|
99 |
# Display assistant response in chat message container
|
100 |
with st.chat_message("assistant"):
|
@@ -106,4 +169,5 @@ if os.path.exists("faiss_index"):
|
|
106 |
else:
|
107 |
st.warning("Please enter your API key")
|
108 |
else:
|
109 |
-
pass
|
|
|
|
1 |
from PyPDF2 import PdfReader
|
2 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter
|
4 |
from langchain.vectorstores import FAISS
|
5 |
from langchain.chains.question_answering import load_qa_chain
|
6 |
from langchain.chains import load_chain
|
7 |
from langchain.llms import OpenAI
|
8 |
import streamlit as st
|
9 |
+
import openai
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings,ChatGoogleGenerativeAI
|
12 |
+
import google.generativeai as genai
|
13 |
+
|
14 |
import os, shutil
|
15 |
|
16 |
+
|
17 |
+
def get_pdf_text(pdf_docs):
|
18 |
+
text=""
|
19 |
+
for pdf in pdf_docs:
|
20 |
+
pdf_reader= PdfReader(pdf)
|
21 |
+
for page in pdf_reader.pages:
|
22 |
+
text+= page.extract_text()
|
23 |
+
return text
|
24 |
+
|
25 |
+
def get_text_chunks(text,method):
|
26 |
+
if method=='Google-Gemini':
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=300)
|
28 |
+
chunks = text_splitter.split_text(text)
|
29 |
+
else:
|
30 |
+
text_splitter = CharacterTextSplitter(separator = "\n",chunk_size = 1000,chunk_overlap = 300,length_function = len)
|
31 |
+
chunks = text_splitter.split_text(raw_text)
|
32 |
+
return chunks
|
33 |
+
|
34 |
+
def get_vector_store(text_chunks,method):
|
35 |
+
try:
|
36 |
+
if method=='Google-Gemini':
|
37 |
+
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
38 |
+
else:
|
39 |
+
embeddings = OpenAIEmbeddings()
|
40 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
41 |
+
vector_store.save_local("faiss_index")
|
42 |
+
except:
|
43 |
+
st.warning("Wrong API, give a valid API")
|
44 |
+
|
45 |
+
|
46 |
+
def get_conversational_chain(method):
|
47 |
+
|
48 |
+
prompt_template = """
|
49 |
+
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
50 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
51 |
+
Context:\n {context}?\n
|
52 |
+
Question: \n{question}\n
|
53 |
+
|
54 |
+
Answer:
|
55 |
+
"""
|
56 |
+
if method=='Google-Gemini':
|
57 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro",
|
58 |
+
temperature=0.3)
|
59 |
+
else:
|
60 |
+
model= OpenAI()
|
61 |
+
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
|
62 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
63 |
+
return chain
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
def user_input(user_question,method):
|
68 |
+
if method=='Google-Gemini':
|
69 |
+
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
|
70 |
+
else:
|
71 |
+
embeddings = OpenAIEmbeddings()
|
72 |
+
|
73 |
+
new_db = FAISS.load_local("faiss_index", embeddings)
|
74 |
+
docs = new_db.similarity_search(user_question)
|
75 |
+
|
76 |
+
chain = get_conversational_chain(method)
|
77 |
+
|
78 |
+
|
79 |
+
response = chain(
|
80 |
+
{"input_documents":docs, "question": user_question}
|
81 |
+
, return_only_outputs=True)
|
82 |
+
return response
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
def delete_directory(directory_path):
|
88 |
try:
|
89 |
shutil.rmtree(directory_path)
|
|
|
91 |
except Exception as e:
|
92 |
print(f"Error deleting directory '{directory_path}': {e}")
|
93 |
|
|
|
|
|
|
|
|
|
|
|
94 |
def return_response(query,document_search,chain):
|
95 |
query = query
|
96 |
docs = document_search.similarity_search(query)
|
97 |
result = chain.run(input_documents=docs, question=query)
|
98 |
return result
|
99 |
|
|
|
100 |
|
|
|
|
|
101 |
|
102 |
+
|
103 |
+
st.set_page_config(page_title="Query any Pdf", page_icon="📄")
|
104 |
+
|
105 |
+
st.title("📄 PDF Query Bot 📄")
|
106 |
+
st.write("Made with ❤️ by Mainak")
|
107 |
+
with st.sidebar:
|
108 |
+
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit Button", accept_multiple_files=True,type=['pdf'])
|
109 |
+
option = st.selectbox('Select a Model(choose OpenAI for best results)',('OpenAI', 'Google-Gemini'))
|
110 |
+
if option=='OpenAI':
|
111 |
+
api_key = st.text_input("Enter Your OpenAI API Key",type="password")
|
112 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
113 |
+
else:
|
114 |
+
api_key = st.text_input("Enter Your Google-Gemini API Key",type="password")
|
115 |
+
os.environ["google_API_KEY"] = api_key
|
116 |
+
genai.configure(api_key=os.getenv("google_API_KEY"))
|
117 |
+
if not pdf_docs:
|
118 |
try:
|
119 |
delete_directory('faiss_index')
|
120 |
except:
|
121 |
pass
|
122 |
+
with st.sidebar:
|
123 |
+
if st.button('Submit'):
|
124 |
+
if api_key:
|
125 |
+
if pdf_docs is not None:
|
126 |
+
# Read text from the uploaded file
|
127 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
128 |
+
with st.spinner('Wait for it...'):
|
129 |
+
raw_text = get_pdf_text(pdf_docs)
|
130 |
+
chunks = get_text_chunks(raw_text,option)
|
131 |
+
get_vector_store(chunks,option)
|
132 |
+
else:
|
133 |
+
st.warning("Please enter your Pdf File")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
else:
|
135 |
+
st.warning("Please enter your API key")
|
136 |
+
|
|
|
137 |
if os.path.exists("faiss_index"):
|
|
|
138 |
if api_key:
|
139 |
+
if pdf_docs is not None:
|
140 |
if "messages" not in st.session_state:
|
141 |
st.session_state.messages = []
|
142 |
|
|
|
150 |
st.markdown(prompt)
|
151 |
# Add user message to chat history
|
152 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
153 |
+
# os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
|
|
154 |
if prompt is None:
|
155 |
re='Ask me anything about the pdf'
|
|
|
|
|
|
|
156 |
else:
|
157 |
with st.spinner('Typping...'):
|
158 |
+
re = user_input(str(prompt),option)
|
159 |
+
re = re["output_text"]
|
160 |
+
# re=return_response(str(prompt),document_search,chain)
|
161 |
response = f"PDF Mate: {re}"
|
162 |
# Display assistant response in chat message container
|
163 |
with st.chat_message("assistant"):
|
|
|
169 |
else:
|
170 |
st.warning("Please enter your API key")
|
171 |
else:
|
172 |
+
pass
|
173 |
+
|