Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import os, zipfile, shutil | |
from utils.image_classification import classifier | |
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,accuracy_score,classification_report | |
import matplotlib.pyplot as plt | |
import splitfolders | |
from io import StringIO | |
import sys | |
# import tensorflow as tf | |
# from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
# from tensorflow.keras.applications import MobileNetV2 | |
# from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense | |
# from tensorflow.keras.models import Model | |
# from sklearn.metrics import classification_report, confusion_matrix | |
# import matplotlib.pyplot as plt | |
# from io import BytesIO | |
# import numpy as np | |
# from PIL import Image | |
c=classifier() | |
def delete_directory(directory_path): | |
try: | |
shutil.rmtree(directory_path) | |
print(f"Directory '{directory_path}' successfully deleted.") | |
except Exception as e: | |
print(f"Error deleting directory '{directory_path}': {e}") | |
# Example usage: | |
# st.subheader('This is a subheader with a divider', divider='blue') | |
st.title('Image Classification Model Training') | |
st.image('elements/image_banner.jpeg') | |
# Page title | |
st.title("Custom Image Classification Trainer") | |
st.sidebar.subheader('Folder Format') | |
st.sidebar.code('''custom_dataset/ | |
βββ train/ | |
β βββ class1/ | |
β βββ class2/ | |
β βββ ... | |
βββ val/ | |
β βββ class1/ | |
β βββ class2/ | |
β βββ ... | |
βββ test/ | |
β βββ class1/ | |
β βββ class2/ | |
β βββ ... | |
''') | |
# Upload image dataset | |
st.header("1. Upload Image Dataset") | |
uploaded_file = st.file_uploader("Choose a ZIP file containing your image dataset", type=["zip"]) | |
dataset_path = 'datasets' | |
split_path = 'split_dir' | |
agree = st.checkbox('Select if your data is not splited in given format') | |
if uploaded_file: | |
if st.button('Extract Data'): | |
if not agree: | |
with st.spinner("Extracting dataset..."): | |
# You should write code here to extract and prepare the dataset. | |
file_name = uploaded_file.name | |
# st.write(f"Uploaded file name: {file_name.split('.')[0]}") | |
extract_dir = dataset_path | |
os.makedirs(extract_dir, exist_ok=True) | |
# Extract the zip file | |
with zipfile.ZipFile(uploaded_file, 'r') as zip_ref: | |
zip_ref.extractall(extract_dir) | |
st.success("Dataset extraction complete!") | |
else: | |
with st.spinner("Extracting dataset..."): | |
# You should write code here to extract and prepare the dataset. | |
file_name = uploaded_file.name | |
# st.write(f"Uploaded file name: {file_name.split('.')[0]}") | |
extract_dir = split_path | |
os.makedirs(extract_dir, exist_ok=True) | |
# Extract the zip file | |
with zipfile.ZipFile(uploaded_file, 'r') as zip_ref: | |
zip_ref.extractall(extract_dir) | |
splitfolders.ratio(extract_dir,seed=1337, output=dataset_path, ratio=(0.8, 0.1, 0.1)) | |
directory_to_delete = extract_dir | |
delete_directory(directory_to_delete) | |
st.success("Dataset extraction complete!") | |
# Sidebar to select model and other options | |
st.header("2. Select Model and Options") | |
model_name = st.selectbox("Select a pre-trained model:", ['EfficientNet_B0','EfficientNet_B1','MnasNet0_5','MnasNet0_75','MnasNet1_0','MobileNet_v2', | |
'MobileNet_v3_small','MobileNet_v3_large','RegNet_y_400mf','ShuffleNet_v2_x0_5','ShuffleNet_v2_x1_0','ShuffleNet_v2_x1_5', | |
'SqueezeNet 1_0','SqueezeNet 1_1']) | |
epochs = st.slider("Number of Epochs", min_value=1, max_value=50, value=10) | |
batch_size = st.slider("Batch Size", min_value=1, max_value=32, value=8) | |
# if st.button('jjjj'): | |
# if uploaded_file==True: | |
# st.text('fine') | |
# else: | |
# st.success('Please Upload Data First') | |
# Training and Evaluation | |
# if uploaded_file: | |
st.header("3. Choose Model and Train") | |
if st.button("Train Model"): | |
if uploaded_file: | |
with st.spinner("Processing Data..."): | |
c.data_loader(dataset_path,batch_size) | |
with st.spinner("Training model..."): | |
# captured_output = StringIO() | |
# sys.stdout = captured_output | |
model = c.train_model(model_name,epochs) | |
# sys.stdout = sys.__stdout__ | |
# # Display captured output in Streamlit | |
# st.sidebar.code("Printed output:") | |
# st.sidebar.code(captured_output.getvalue()) | |
# You should write code here to load the dataset, build the selected model, train it, and save the model. | |
# For example: | |
# model = build_model(model_name) | |
# train_model(model, dataset_path, epochs, batch_size) | |
# model.save("custom_classification_model.h5") | |
st.success("Training complete!") | |
st.header('4. Evaluation') | |
with st.spinner("Evaluating model..."): | |
# You should write code here to load the trained model, evaluate its performance, and display metrics. | |
# For example: | |
# trained_model = tf.keras.models.load_model("custom_classification_model.h5") | |
# test_data, test_labels = load_test_data(dataset_path) | |
# predictions = trained_model.predict(test_data) | |
# report = classification_report(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1)) | |
# confusion = confusion_matrix(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1)) | |
y_true, y_pred, y_pred_prob=c.pytorch_predict(model) | |
# st.text([y_true, y_pred]) | |
col1, col2 = st.columns([3,2]) | |
col1.subheader("Classification Report") | |
# col1.text(classification_report(y_true, y_pred)) | |
report_dict = classification_report(y_true, y_pred, target_names=c.class_names,output_dict=True) | |
accuracy = report_dict['accuracy'] | |
del report_dict['accuracy'] | |
df = pd.DataFrame(report_dict).transpose() | |
col1.text(f'Accuracy of the Model: {round(accuracy,1)}') | |
col1.dataframe(df) | |
col2.subheader("Confusion Matrix") | |
cm = confusion_matrix(y_true, y_pred) | |
fig = ConfusionMatrixDisplay(cm, display_labels=c.class_names).plot(cmap='Blues') | |
plt.savefig('elements/confusion_matrix.png') | |
# fig_array = np.array(fig.figure_.canvas.renderer.buffer_rgba()) | |
col2.image('elements/confusion_matrix.png') | |
# st.text("Classification Report:") | |
# # st.text(report) | |
# df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2))) | |
# st.table(df) | |
# st.text("Confusion Matrix:") | |
# # st.write(confusion) | |
# df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2))) | |
# st.table(df) | |
with open('model.pt', "rb") as model_file: | |
st.download_button( | |
label="Download Model", | |
data=model_file, | |
file_name=f"model_{model_name}.pt", | |
key="model_download", | |
) | |
st.balloons() | |
else: | |
st.warning("Please Upload Data First") | |
# st.header("4. Evaluate Model") | |
# if st.button("Evaluate Model"): | |
# with st.spinner("Evaluating model..."): | |
# # You should write code here to load the trained model, evaluate its performance, and display metrics. | |
# # For example: | |
# # trained_model = tf.keras.models.load_model("custom_classification_model.h5") | |
# # test_data, test_labels = load_test_data(dataset_path) | |
# # predictions = trained_model.predict(test_data) | |
# # report = classification_report(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1)) | |
# # confusion = confusion_matrix(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1)) | |
# y_true, y_pred, y_pred_prob=c.pytorch_predict() | |
# st.text(y_true, y_pred) | |
# st.text("Classification Report:") | |
# # st.text(report) | |
# df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2))) | |
# st.table(df) | |
# st.text("Confusion Matrix:") | |
# # st.write(confusion) | |
# df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2))) | |
# st.table(df) | |
# Helper functions for dataset extraction, model building, and training can be defined separately. | |