Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- utils/image_classification.py +307 -0
- utils/object_detection.py +0 -0
utils/image_classification.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import torch.optim as optim
|
5 |
+
from torch.optim import lr_scheduler
|
6 |
+
import torch.backends.cudnn as cudnn
|
7 |
+
import numpy as np
|
8 |
+
import torchvision
|
9 |
+
from torchvision import datasets, models, transforms
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import time
|
12 |
+
import os
|
13 |
+
from PIL import Image
|
14 |
+
from tempfile import TemporaryDirectory
|
15 |
+
import streamlit as st
|
16 |
+
|
17 |
+
cudnn.benchmark = True
|
18 |
+
plt.ion() # interactive mode
|
19 |
+
|
20 |
+
class classifier():
|
21 |
+
def __init__(self):
|
22 |
+
self.data_transforms = None
|
23 |
+
self.data_dir = None
|
24 |
+
self.image_datasets = None
|
25 |
+
self.dataloaders = None
|
26 |
+
self.dataset_sizes = None
|
27 |
+
self.class_names = None
|
28 |
+
self.device = None
|
29 |
+
self.num_classes = None
|
30 |
+
def data_loader(self,path,batch_size=4):
|
31 |
+
# Data augmentation and normalization for training
|
32 |
+
# Just normalization for validation
|
33 |
+
self.data_transforms = {
|
34 |
+
'train': transforms.Compose([
|
35 |
+
transforms.RandomResizedCrop(224),
|
36 |
+
transforms.RandomHorizontalFlip(),
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
39 |
+
]),
|
40 |
+
'val': transforms.Compose([
|
41 |
+
transforms.Resize(256),
|
42 |
+
transforms.CenterCrop(224),
|
43 |
+
transforms.ToTensor(),
|
44 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
45 |
+
]),
|
46 |
+
'test': transforms.Compose([
|
47 |
+
transforms.Resize(256),
|
48 |
+
transforms.CenterCrop(224),
|
49 |
+
transforms.ToTensor(),
|
50 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
51 |
+
])
|
52 |
+
}
|
53 |
+
|
54 |
+
self.data_dir = path
|
55 |
+
self.image_datasets = {x: datasets.ImageFolder(os.path.join(self.data_dir, x),
|
56 |
+
self.data_transforms[x])
|
57 |
+
for x in ['train', 'val','test']}
|
58 |
+
self.dataloaders = {x: torch.utils.data.DataLoader(self.image_datasets[x], batch_size=batch_size,
|
59 |
+
shuffle=True, num_workers=4)
|
60 |
+
for x in ['train', 'val','test']}
|
61 |
+
self.dataset_sizes = {x: len(self.image_datasets[x]) for x in ['train', 'val','test']}
|
62 |
+
self.class_names = self.image_datasets['train'].classes
|
63 |
+
self.num_classes = len(self.class_names)
|
64 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
65 |
+
|
66 |
+
def train(self,model, criterion, optimizer, scheduler, num_epochs=25):
|
67 |
+
since = time.time()
|
68 |
+
|
69 |
+
# Create a temporary directory to save training checkpoints
|
70 |
+
with TemporaryDirectory() as tempdir:
|
71 |
+
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
|
72 |
+
|
73 |
+
torch.save(model.state_dict(), best_model_params_path)
|
74 |
+
best_acc = 0.0
|
75 |
+
|
76 |
+
for epoch in range(num_epochs):
|
77 |
+
print(f'Epoch {epoch+1}/{num_epochs}')
|
78 |
+
print('-' * 10)
|
79 |
+
st.sidebar.subheader(f':blue[Epoch {epoch+1}/{num_epochs}]', divider='blue')
|
80 |
+
# st.sidebar.code('-' * 10)
|
81 |
+
# Each epoch has a training and validation phase
|
82 |
+
for phase in ['train', 'val']:
|
83 |
+
if phase == 'train':
|
84 |
+
model.train() # Set model to training mode
|
85 |
+
else:
|
86 |
+
model.eval() # Set model to evaluate mode
|
87 |
+
|
88 |
+
running_loss = 0.0
|
89 |
+
running_corrects = 0
|
90 |
+
|
91 |
+
# Iterate over data.
|
92 |
+
for inputs, labels in self.dataloaders[phase]:
|
93 |
+
inputs = inputs.to(self.device)
|
94 |
+
labels = labels.to(self.device)
|
95 |
+
|
96 |
+
# zero the parameter gradients
|
97 |
+
optimizer.zero_grad()
|
98 |
+
|
99 |
+
# forward
|
100 |
+
# track history if only in train
|
101 |
+
with torch.set_grad_enabled(phase == 'train'):
|
102 |
+
outputs = model(inputs)
|
103 |
+
_, preds = torch.max(outputs, 1)
|
104 |
+
loss = criterion(outputs, labels)
|
105 |
+
|
106 |
+
# backward + optimize only if in training phase
|
107 |
+
if phase == 'train':
|
108 |
+
loss.backward()
|
109 |
+
optimizer.step()
|
110 |
+
|
111 |
+
# statistics
|
112 |
+
running_loss += loss.item() * inputs.size(0)
|
113 |
+
running_corrects += torch.sum(preds == labels.data)
|
114 |
+
if phase == 'train':
|
115 |
+
scheduler.step()
|
116 |
+
|
117 |
+
epoch_loss = running_loss / self.dataset_sizes[phase]
|
118 |
+
epoch_acc = running_corrects.double() / self.dataset_sizes[phase]
|
119 |
+
|
120 |
+
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
121 |
+
st.sidebar.caption(f':blue[{phase[0].upper() + phase[1:]} Loss:] {epoch_loss:.4f} :blue[ Accuracy:] {epoch_acc:.4f}')
|
122 |
+
# deep copy the model
|
123 |
+
if phase == 'val' and epoch_acc > best_acc:
|
124 |
+
best_acc = epoch_acc
|
125 |
+
torch.save(model.state_dict(), best_model_params_path)
|
126 |
+
|
127 |
+
print()
|
128 |
+
|
129 |
+
time_elapsed = time.time() - since
|
130 |
+
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
|
131 |
+
print(f'Best val Accuracy: {best_acc:4f}')
|
132 |
+
st.sidebar.caption(f':green[Training complete in] {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
|
133 |
+
st.sidebar.subheader(f':blue[Best val Accuracy:] {best_acc:4f}')
|
134 |
+
# load best model weights
|
135 |
+
model.load_state_dict(torch.load(best_model_params_path))
|
136 |
+
return model
|
137 |
+
|
138 |
+
def train_model(self,model_name,epochs):
|
139 |
+
num_classes = self.num_classes
|
140 |
+
if model_name == 'EfficientNet_B0':
|
141 |
+
model = models.efficientnet_b0(pretrained=True)
|
142 |
+
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
143 |
+
# model.classifier[1].out_features = num_classes
|
144 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
145 |
+
|
146 |
+
elif model_name == 'EfficientNet_B1':
|
147 |
+
model = models.efficientnet_b1(pretrained=True)
|
148 |
+
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
149 |
+
# model.classifier[1].out_features = num_classes
|
150 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
151 |
+
elif model_name == 'MnasNet0_5':
|
152 |
+
model = models.mnasnet0_5(pretrained=True)
|
153 |
+
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
154 |
+
# model.classifier[1].out_features = num_classes
|
155 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
156 |
+
|
157 |
+
elif model_name == 'MnasNet0_75':
|
158 |
+
model = models.mnasnet0_75(pretrained=True)
|
159 |
+
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
160 |
+
# model.classifier[1].out_features = num_classes
|
161 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
162 |
+
|
163 |
+
|
164 |
+
elif model_name == 'MnasNet1_0':
|
165 |
+
model = models.mnasnet1_0(pretrained=True)
|
166 |
+
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
167 |
+
# model.classifier[1].out_features = num_classes
|
168 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
169 |
+
|
170 |
+
|
171 |
+
elif model_name == 'MobileNet_v2':
|
172 |
+
model = models.mobilenet_v2(pretrained=True)
|
173 |
+
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
174 |
+
# model.classifier[1].out_features = num_classes
|
175 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
176 |
+
|
177 |
+
|
178 |
+
elif model_name == 'MobileNet_v3_small':
|
179 |
+
model = models.mobilenet_v3_small(pretrained=True)
|
180 |
+
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes)
|
181 |
+
# model.classifier[3].out_features = num_classes
|
182 |
+
optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9)
|
183 |
+
|
184 |
+
|
185 |
+
elif model_name == 'MobileNet_v3_large':
|
186 |
+
model = models.mobilenet_v3_large(pretrained=True)
|
187 |
+
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes)
|
188 |
+
# model.classifier[3].out_features = num_classes
|
189 |
+
optimizer = torch.optim.SGD(model.classifier[3].parameters(), lr=0.001, momentum=0.9)
|
190 |
+
|
191 |
+
|
192 |
+
elif model_name == 'RegNet_y_400mf':
|
193 |
+
model = models.regnet_y_400mf(pretrained=True)
|
194 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
195 |
+
# model.fc.out_features = num_classes
|
196 |
+
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
|
197 |
+
|
198 |
+
|
199 |
+
elif model_name == 'ShuffleNet_v2_x0_5':
|
200 |
+
model = models.shufflenet_v2_x0_5(pretrained=True)
|
201 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
202 |
+
# model.fc.out_features = num_classes
|
203 |
+
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
|
204 |
+
|
205 |
+
|
206 |
+
elif model_name == 'ShuffleNet_v2_x1_0':
|
207 |
+
model = models.shufflenet_v2_x1_0(pretrained=True)
|
208 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
209 |
+
# model.fc.out_features = num_classes
|
210 |
+
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
|
211 |
+
|
212 |
+
|
213 |
+
elif model_name == 'ShuffleNet_v2_x1_5':
|
214 |
+
model = models.shufflenet_v2_x1_5(pretrained=True)
|
215 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
216 |
+
# model.fc.out_features = num_classes
|
217 |
+
optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)
|
218 |
+
|
219 |
+
|
220 |
+
elif model_name == 'SqueezeNet 1_0':
|
221 |
+
model = models.squeezenet1_0(pretrained=True)
|
222 |
+
model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride)
|
223 |
+
# model.classifier[1].out_channels = num_classes
|
224 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
225 |
+
|
226 |
+
|
227 |
+
elif model_name == 'SqueezeNet 1_1':
|
228 |
+
model = models.squeezenet1_1(pretrained=True)
|
229 |
+
model.classifier[1] = nn.Conv2d(model.classifier[1].in_channels, num_classes,model.classifier[1].kernel_size, model.classifier[1].stride)
|
230 |
+
# model.classifier[1].out_channels = num_classes
|
231 |
+
optimizer = torch.optim.SGD(model.classifier[1].parameters(), lr=0.001, momentum=0.9)
|
232 |
+
|
233 |
+
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
|
234 |
+
criterion = nn.CrossEntropyLoss()
|
235 |
+
model_ft = self.train(model, criterion, optimizer, exp_lr_scheduler,
|
236 |
+
num_epochs=epochs)
|
237 |
+
torch.save(model.state_dict(), 'model.pt')
|
238 |
+
return model_ft
|
239 |
+
|
240 |
+
def imshow(self,inp, title=None):
|
241 |
+
"""Display image for Tensor."""
|
242 |
+
inp = inp.numpy().transpose((1, 2, 0))
|
243 |
+
mean = np.array([0.485, 0.456, 0.406])
|
244 |
+
std = np.array([0.229, 0.224, 0.225])
|
245 |
+
inp = std * inp + mean
|
246 |
+
inp = np.clip(inp, 0, 1)
|
247 |
+
plt.imshow(inp)
|
248 |
+
if title is not None:
|
249 |
+
plt.title(title)
|
250 |
+
plt.pause(0.001)
|
251 |
+
|
252 |
+
def visualize_model(self,model, num_images=6):
|
253 |
+
was_training = model.training
|
254 |
+
model.eval()
|
255 |
+
images_so_far = 0
|
256 |
+
fig = plt.figure()
|
257 |
+
|
258 |
+
with torch.no_grad():
|
259 |
+
for i, (inputs, labels) in enumerate(self.dataloaders['val']):
|
260 |
+
inputs = inputs.to(self.device)
|
261 |
+
labels = labels.to(self.device)
|
262 |
+
|
263 |
+
outputs = model(inputs)
|
264 |
+
_, preds = torch.max(outputs, 1)
|
265 |
+
|
266 |
+
for j in range(inputs.size()[0]):
|
267 |
+
images_so_far += 1
|
268 |
+
ax = plt.subplot(num_images//2, 2, images_so_far)
|
269 |
+
ax.axis('off')
|
270 |
+
ax.set_title(f'predicted: {self.class_names[preds[j]]}')
|
271 |
+
self.imshow(inputs.cpu().data[j])
|
272 |
+
|
273 |
+
if images_so_far == num_images:
|
274 |
+
model.train(mode=was_training)
|
275 |
+
return
|
276 |
+
model.train(mode=was_training)
|
277 |
+
|
278 |
+
def pytorch_predict(self,model):
|
279 |
+
'''
|
280 |
+
Make prediction from a pytorch model
|
281 |
+
'''
|
282 |
+
# set model to evaluate model
|
283 |
+
|
284 |
+
model.eval()
|
285 |
+
|
286 |
+
y_true = torch.tensor([], dtype=torch.long, device=self.device)
|
287 |
+
all_outputs = torch.tensor([], device=self.device)
|
288 |
+
|
289 |
+
# deactivate autograd engine and reduce memory usage and speed up computations
|
290 |
+
with torch.no_grad():
|
291 |
+
for data in self.dataloaders['test']:
|
292 |
+
inputs = [i.to(self.device) for i in data[:-1]]
|
293 |
+
labels = data[-1].to(self.device)
|
294 |
+
|
295 |
+
outputs = model(*inputs)
|
296 |
+
y_true = torch.cat((y_true, labels), 0)
|
297 |
+
all_outputs = torch.cat((all_outputs, outputs), 0)
|
298 |
+
|
299 |
+
y_true = y_true.cpu().numpy()
|
300 |
+
_, y_pred = torch.max(all_outputs, 1)
|
301 |
+
y_pred = y_pred.cpu().numpy()
|
302 |
+
y_pred_prob = F.softmax(all_outputs, dim=1).cpu().numpy()
|
303 |
+
|
304 |
+
return y_true, y_pred, y_pred_prob
|
305 |
+
|
306 |
+
|
307 |
+
|
utils/object_detection.py
ADDED
File without changes
|