mainakhf commited on
Commit
8cc9a9e
Β·
1 Parent(s): ca2fb5f

Update pages/🎈_object_detection.py

Browse files
Files changed (1) hide show
  1. pages/🎈_object_detection.py +0 -94
pages/🎈_object_detection.py CHANGED
@@ -8,97 +8,3 @@ st.image('elements/object_banner.png')
8
 
9
  st.image('elements/commingsoon.gif',use_column_width=True)
10
 
11
- # st.sidebar.subheader('Folder Format')
12
- # st.sidebar.subheader(':red[(Data should be in yolo format)]')
13
-
14
- # st.sidebar.code('''custom_dataset/
15
- # β”œβ”€β”€ train/
16
- # β”‚ β”œβ”€β”€ image/
17
- # β”‚ β”œβ”€β”€ label/
18
- # β”‚ β”œβ”€β”€ ...
19
- # β”œβ”€β”€ val/
20
- # β”‚ β”œβ”€β”€ image/
21
- # β”‚ β”œβ”€β”€ label/
22
- # β”‚ β”œβ”€β”€ ...
23
- # ''')
24
-
25
- # from io import StringIO
26
- # import sys
27
-
28
- # # Redirect stdout to capture print statements
29
- # captured_output = StringIO()
30
- # sys.stdout = captured_output
31
-
32
- # from print import my_function
33
-
34
- # # Run the function to capture the output
35
- # if st.button('print'):
36
- # my_function()
37
-
38
- # # Reset stdout to its original state
39
- # sys.stdout = sys.__stdout__
40
-
41
- # # Display captured output in Streamlit
42
- # st.sidebar.code("Printed output:")
43
- # st.sidebar.code(captured_output.getvalue())
44
-
45
- # st.header("1. Upload Image Dataset")
46
- # uploaded_file = st.file_uploader("Choose a ZIP file containing your image dataset", type=["zip"])
47
- # dataset_path = True
48
-
49
- # # Sidebar to select model and other options
50
- # st.header("2. Select Model and Options")
51
- # model_name = st.selectbox("Select a pre-trained model:", ["MobileNetV2", "ResNet50", "InceptionV3"])
52
- # epochs = st.slider("Number of Epochs", min_value=1, max_value=50, value=10)
53
- # batch_size = st.slider("Batch Size", min_value=1, max_value=32, value=8)
54
-
55
-
56
- # if uploaded_file:
57
- # with st.spinner("Extracting dataset..."):
58
- # # You should write code here to extract and prepare the dataset.
59
-
60
- # # For example:
61
- # # dataset_path = extract_dataset(uploaded_file)
62
- # dataset_path = 'jjjj'
63
-
64
- # st.success("Dataset extraction complete!")
65
-
66
- # # Training and Evaluation
67
- # if dataset_path:
68
- # st.header("3. Choose Model and Train")
69
- # if st.button("Train Model"):
70
- # with st.spinner("Training model..."):
71
- # # You should write code here to load the dataset, build the selected model, train it, and save the model.
72
-
73
- # # For example:
74
- # # model = build_model(model_name)
75
- # # train_model(model, dataset_path, epochs, batch_size)
76
- # # model.save("custom_classification_model.h5")
77
-
78
- # st.success("Training complete!")
79
-
80
- # st.header("4. Evaluate Model")
81
- # if st.button("Evaluate Model"):
82
- # with st.spinner("Evaluating model..."):
83
- # # You should write code here to load the trained model, evaluate its performance, and display metrics.
84
-
85
- # # For example:
86
- # # trained_model = tf.keras.models.load_model("custom_classification_model.h5")
87
- # # test_data, test_labels = load_test_data(dataset_path)
88
- # # predictions = trained_model.predict(test_data)
89
- # # report = classification_report(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1))
90
- # # confusion = confusion_matrix(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1))
91
-
92
- # st.text("Classification Report:")
93
- # # st.text(report)
94
- # df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2)))
95
-
96
- # st.table(df)
97
-
98
- # st.text("Confusion Matrix:")
99
- # # st.write(confusion)
100
- # df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2)))
101
-
102
- # st.table(df)
103
-
104
- # # Helper functions for dataset extraction, model building, and training can be defined separately.
 
8
 
9
  st.image('elements/commingsoon.gif',use_column_width=True)
10