Spaces:
Runtime error
Runtime error
Update pages/π_object_detection.py
Browse files
pages/π_object_detection.py
CHANGED
@@ -8,97 +8,3 @@ st.image('elements/object_banner.png')
|
|
8 |
|
9 |
st.image('elements/commingsoon.gif',use_column_width=True)
|
10 |
|
11 |
-
# st.sidebar.subheader('Folder Format')
|
12 |
-
# st.sidebar.subheader(':red[(Data should be in yolo format)]')
|
13 |
-
|
14 |
-
# st.sidebar.code('''custom_dataset/
|
15 |
-
# βββ train/
|
16 |
-
# β βββ image/
|
17 |
-
# β βββ label/
|
18 |
-
# β βββ ...
|
19 |
-
# βββ val/
|
20 |
-
# β βββ image/
|
21 |
-
# β βββ label/
|
22 |
-
# β βββ ...
|
23 |
-
# ''')
|
24 |
-
|
25 |
-
# from io import StringIO
|
26 |
-
# import sys
|
27 |
-
|
28 |
-
# # Redirect stdout to capture print statements
|
29 |
-
# captured_output = StringIO()
|
30 |
-
# sys.stdout = captured_output
|
31 |
-
|
32 |
-
# from print import my_function
|
33 |
-
|
34 |
-
# # Run the function to capture the output
|
35 |
-
# if st.button('print'):
|
36 |
-
# my_function()
|
37 |
-
|
38 |
-
# # Reset stdout to its original state
|
39 |
-
# sys.stdout = sys.__stdout__
|
40 |
-
|
41 |
-
# # Display captured output in Streamlit
|
42 |
-
# st.sidebar.code("Printed output:")
|
43 |
-
# st.sidebar.code(captured_output.getvalue())
|
44 |
-
|
45 |
-
# st.header("1. Upload Image Dataset")
|
46 |
-
# uploaded_file = st.file_uploader("Choose a ZIP file containing your image dataset", type=["zip"])
|
47 |
-
# dataset_path = True
|
48 |
-
|
49 |
-
# # Sidebar to select model and other options
|
50 |
-
# st.header("2. Select Model and Options")
|
51 |
-
# model_name = st.selectbox("Select a pre-trained model:", ["MobileNetV2", "ResNet50", "InceptionV3"])
|
52 |
-
# epochs = st.slider("Number of Epochs", min_value=1, max_value=50, value=10)
|
53 |
-
# batch_size = st.slider("Batch Size", min_value=1, max_value=32, value=8)
|
54 |
-
|
55 |
-
|
56 |
-
# if uploaded_file:
|
57 |
-
# with st.spinner("Extracting dataset..."):
|
58 |
-
# # You should write code here to extract and prepare the dataset.
|
59 |
-
|
60 |
-
# # For example:
|
61 |
-
# # dataset_path = extract_dataset(uploaded_file)
|
62 |
-
# dataset_path = 'jjjj'
|
63 |
-
|
64 |
-
# st.success("Dataset extraction complete!")
|
65 |
-
|
66 |
-
# # Training and Evaluation
|
67 |
-
# if dataset_path:
|
68 |
-
# st.header("3. Choose Model and Train")
|
69 |
-
# if st.button("Train Model"):
|
70 |
-
# with st.spinner("Training model..."):
|
71 |
-
# # You should write code here to load the dataset, build the selected model, train it, and save the model.
|
72 |
-
|
73 |
-
# # For example:
|
74 |
-
# # model = build_model(model_name)
|
75 |
-
# # train_model(model, dataset_path, epochs, batch_size)
|
76 |
-
# # model.save("custom_classification_model.h5")
|
77 |
-
|
78 |
-
# st.success("Training complete!")
|
79 |
-
|
80 |
-
# st.header("4. Evaluate Model")
|
81 |
-
# if st.button("Evaluate Model"):
|
82 |
-
# with st.spinner("Evaluating model..."):
|
83 |
-
# # You should write code here to load the trained model, evaluate its performance, and display metrics.
|
84 |
-
|
85 |
-
# # For example:
|
86 |
-
# # trained_model = tf.keras.models.load_model("custom_classification_model.h5")
|
87 |
-
# # test_data, test_labels = load_test_data(dataset_path)
|
88 |
-
# # predictions = trained_model.predict(test_data)
|
89 |
-
# # report = classification_report(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1))
|
90 |
-
# # confusion = confusion_matrix(np.argmax(test_labels, axis=1), np.argmax(predictions, axis=1))
|
91 |
-
|
92 |
-
# st.text("Classification Report:")
|
93 |
-
# # st.text(report)
|
94 |
-
# df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2)))
|
95 |
-
|
96 |
-
# st.table(df)
|
97 |
-
|
98 |
-
# st.text("Confusion Matrix:")
|
99 |
-
# # st.write(confusion)
|
100 |
-
# df = pd.DataFrame(np.random.randn(2, 2), columns=("col %d" % i for i in range(2)))
|
101 |
-
|
102 |
-
# st.table(df)
|
103 |
-
|
104 |
-
# # Helper functions for dataset extraction, model building, and training can be defined separately.
|
|
|
8 |
|
9 |
st.image('elements/commingsoon.gif',use_column_width=True)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|