Spaces:
Running
Running
File size: 10,530 Bytes
c2eb7e0 f352eac c2eb7e0 e1148db b630dd7 c2eb7e0 e1148db c2eb7e0 e1148db b630dd7 e1148db c2eb7e0 e1148db c2eb7e0 e1148db c2eb7e0 e1148db c2eb7e0 e1148db b630dd7 e1148db c2eb7e0 e1148db c2eb7e0 e1148db c2eb7e0 e1148db c2eb7e0 e1148db c2eb7e0 e1148db c2eb7e0 e1148db c2eb7e0 e1148db d3832e0 e1148db c2eb7e0 f352eac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import cv2
import numpy as np
import matplotlib.pyplot as plt
import ultralytics
from ultralytics import YOLO
print(ultralytics.__version__)
from ultralytics.yolo.utils.ops import scale_image
model = YOLO('yolov8n-face.pt')
model_seg = YOLO('yolov8s-seg.pt')
def crop_passport_size(img_arr,size):
if size==3545:
passport_size = (310, 410)
elif size==34:
passport_size = (260, 346)
else:
passport_size = (170, 210)
# Load the input image
# original_image = cv2.imread(input_image_path)
original_image = img_arr
# Define the dimensions for the passport-size photo (35mm x 45mm)
# passport_size = (310, 410)
# Resize the image to the passport-size dimensions
resized_image = cv2.resize(original_image, (passport_size[0], passport_size[1]))
# Save the cropped passport-size image
# w_output = add_border(output, 4, 4, 4, 4, (0,0,0))
# w_output = add_border(w_output, 15, 15, 15, 15, (255,255,255))
# cv2.imwrite(output_image_path, resized_image)
return resized_image
def add_border(image, top, bottom, left, right, color):
return cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
def horizontal_merge(number,crop_img,size):
if size==3545:
white_image = np.ones((450, 350, 3), dtype=np.uint8) * 255
img_per_row = 6
elif size==34:
white_image = np.ones((386, 300, 3), dtype=np.uint8) * 255
img_per_row = 7
else:
white_image = np.ones((250, 210, 3), dtype=np.uint8) * 255
img_per_row = 10
# white_image = np.ones((450, 350, 3), dtype=np.uint8) * 255
list_img = []
# for i in range(5):
for i in range(number):
list_img.append(crop_img)
for i in range(img_per_row-number):
list_img.append(white_image)
merge_img = cv2.hconcat(list_img)
return merge_img
def merge_all(number,input_path,size):
input_image_path = input_path # Replace with the path to your input image
# output_image_path = output_path # Replace with the desired output path
output=crop_passport_size(input_image_path,size)
w_output = add_border(output, 4, 4, 4, 4, (0,0,0))
w_output = add_border(w_output, 15, 15, 15, 15, (255,255,255))
w_output = add_border(w_output, 1, 1, 1, 1, (0,0,0))
if size==3545:
img_per_row = 6
bottom_part = np.ones((270, 2100, 3), dtype=np.uint8) * 255
elif size==34:
img_per_row = 7
bottom_part = np.ones((268, 2100, 3), dtype=np.uint8) * 255
else:
img_per_row = 10
bottom_part = np.ones((470, 2100, 3), dtype=np.uint8) * 255
img_2 = []
num_ = number
if num_%img_per_row == 0:
for i in range(int(num_/img_per_row)):
img1 = horizontal_merge(img_per_row,w_output,size)
img_2.append(img1)
# print('fill')
for i in range(img_per_row-int(num_/img_per_row)):
img1_1 = horizontal_merge(0,w_output,size)
img_2.append(img1_1)
# print('blank')
elif num_%img_per_row != 0:
for i in range(int(num_//img_per_row)):
img1 = horizontal_merge(img_per_row,w_output,size)
img_2.append(img1)
# print('fill')
img1 = horizontal_merge(num_%img_per_row,w_output,size)
img_2.append(img1)
# print('some')
for i in range(img_per_row-int(num_//img_per_row)-1):
img1 = horizontal_merge(0,w_output,size)
img_2.append(img1)
# print('blank')
merge_img_final = cv2.vconcat(img_2)
# print(merge_img_final.shape)
# bottom_part = np.ones((270, 2100, 3), dtype=np.uint8) * 255
merge_img_final = cv2.vconcat([merge_img_final,bottom_part])
# print(merge_img_final.shape)
merge_img_final = add_border(merge_img_final, 52, 32, 30, 30, (255,255,255))
# print(merge_img_final.shape)
# cv2.imwrite(output_path, merge_img_final)
# print(merge_img_final.shape)
return merge_img_final
def align_crop_image(img):
# img = cv2.imread(img)
img = cv2.copyMakeBorder(img, 50, 0, 0, 0, cv2.BORDER_CONSTANT, value=(255,255,255))
results = model(img)
if len(results[0].boxes.data)==1:
b_box_up = int(results[0].boxes.data[0][0]),int(results[0].boxes.data[0][1])
b_box_down = int(results[0].boxes.data[0][2]),int(results[0].boxes.data[0][3])
left_eye=int(results[0].keypoints.data[0][0][0]),int(results[0].keypoints.data[0][0][1])
right_eye=int(results[0].keypoints.data[0][1][0]),int(results[0].keypoints.data[0][1][1])
nose=int(results[0].keypoints.data[0][2][0]),int(results[0].keypoints.data[0][2][1])
left_lip=int(results[0].keypoints.data[0][3][0]),int(results[0].keypoints.data[0][3][1])
right_lip=int(results[0].keypoints.data[0][4][0]),int(results[0].keypoints.data[0][4][1])
left_eye_center = left_eye
left_eye_x = left_eye_center[0]
left_eye_y = left_eye_center[1]
right_eye_center = right_eye
right_eye_x = right_eye_center[0]
right_eye_y = right_eye_center[1]
if left_eye_y > right_eye_y:
A = (right_eye_x, left_eye_y)
# Integer -1 indicates that the image will rotate in the clockwise direction
direction = -1
else:
A = (left_eye_x, right_eye_y)
# Integer 1 indicates that image will rotate in the counter clockwise
# direction
direction = 1
delta_x = right_eye_x - left_eye_x
delta_y = right_eye_y - left_eye_y
angle=np.arctan(delta_y/delta_x)
angle = (angle * 180) / np.pi
h, w = img.shape[:2]
# Calculating a center point of the image
# Integer division "//"" ensures that we receive whole numbers
center = (w // 2, h // 2)
# Defining a matrix M and calling
# cv2.getRotationMatrix2D method
M = cv2.getRotationMatrix2D(center, (angle), 1.0)
# Applying the rotation to our image using the
# cv2.warpAffine method
rotated = cv2.warpAffine(img, M, (w, h))
results = model(rotated)
b_box_up = int(results[0].boxes.data[0][0]),int(results[0].boxes.data[0][1])
b_box_down = int(results[0].boxes.data[0][2]),int(results[0].boxes.data[0][3])
box_height = b_box_down[0]-b_box_up[0]
box_width = b_box_down[1]-b_box_up[1]
left_eye=int(results[0].keypoints.data[0][0][0]),int(results[0].keypoints.data[0][0][1])
right_eye=int(results[0].keypoints.data[0][1][0]),int(results[0].keypoints.data[0][1][1])
nose=int(results[0].keypoints.data[0][2][0]),int(results[0].keypoints.data[0][2][1])
left_lip=int(results[0].keypoints.data[0][3][0]),int(results[0].keypoints.data[0][3][1])
right_lip=int(results[0].keypoints.data[0][4][0]),int(results[0].keypoints.data[0][4][1])
left_eye_center = left_eye
left_eye_x = left_eye_center[0]
left_eye_y = left_eye_center[1]
right_eye_center = right_eye
right_eye_x = right_eye_center[0]
right_eye_y = right_eye_center[1]
up_crop = b_box_up[0]-int(box_height/2),b_box_up[1]-int(box_width/3)
down_crop = b_box_down[0]+int(box_height/2),right_lip[1]+box_width
final_image = rotated[up_crop[1]:down_crop[1],up_crop[0]:down_crop[0]]
resized_image =cv2.resize(final_image, (210, 297))
return resized_image
else:
return None
def predict_on_image(img, conf):
result = model_seg(img, conf=conf)[0]
# detection
# result.boxes.xyxy # box with xyxy format, (N, 4)
cls = result.boxes.cls.cpu().numpy() # cls, (N, 1)
probs = result.boxes.conf.cpu().numpy() # confidence score, (N, 1)
boxes = result.boxes.xyxy.cpu().numpy() # box with xyxy format, (N, 4)
# segmentation
if result.masks:
masks = result.masks.data.cpu().numpy() # masks, (N, H, W)
masks = np.moveaxis(masks, 0, -1) # masks, (H, W, N)
print(masks.shape)
# rescale masks to original image
masks = scale_image(masks, result.masks.orig_shape)
masks = np.moveaxis(masks, -1, 0) # masks, (N, H, W)
return boxes, masks, cls, probs
else:
return None
def overlay(image, mask, color, alpha, resize=None):
"""Combines image and its segmentation mask into a single image.
https://www.kaggle.com/code/purplejester/showing-samples-with-segmentation-mask-overlay
Params:
image: Training image. np.ndarray,
mask: Segmentation mask. np.ndarray,
color: Color for segmentation mask rendering. tuple[int, int, int] = (255, 0, 0)
alpha: Segmentation mask's transparency. float = 0.5,
resize: If provided, both image and its mask are resized before blending them together.
tuple[int, int] = (1024, 1024))
Returns:
image_combined: The combined image. np.ndarray
"""
for i in range(len(mask)):
for j in range(len(mask[i])):
# print(masks[0][i][j])
mask[i][j] = abs(mask[i][j] - 1)
color = color[::-1]
colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
if resize is not None:
image = cv2.resize(image.transpose(1, 2, 0), resize)
image_overlay = cv2.resize(image_overlay.transpose(1, 2, 0), resize)
image_combined = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
return image_combined
def add_name_dob(img,name,dob):
img = cv2.resize(img,(420,594))
img = cv2.rectangle(img,(0,520),(420,594),(255,255,255),-1)
dob = 'D.O.B: '+dob
font = 1#cv2.FONT_HERSHEY_SIMPLEX
font_scale = 2
font_thickness = 2
# Get the size of the text
text_size = cv2.getTextSize(name, font, font_scale, font_thickness)[0]
dob_size = cv2.getTextSize(dob, font, font_scale, font_thickness)[0]
# Calculate the position to center the text
text_x = (img.shape[1] - text_size[0]) // 2
text_y = (img.shape[0] + text_size[1]) // 2
dob_x = (img.shape[1] - dob_size[0]) // 2
dob_y = (img.shape[0] + dob_size[1]) // 2
# Put the text on the image
cv2.putText(img, name, (text_x, 547), font, font_scale, (0, 0, 0), font_thickness)
cv2.putText(img, dob, (dob_x, 583), font, font_scale, (0, 0, 0), font_thickness)
return img |