File size: 10,530 Bytes
c2eb7e0
 
 
f352eac
 
 
 
 
 
c2eb7e0
 
 
e1148db
 
 
 
 
b630dd7
 
c2eb7e0
 
 
 
e1148db
c2eb7e0
 
 
 
 
 
 
 
 
 
 
 
 
e1148db
 
 
 
 
 
 
b630dd7
 
 
e1148db
c2eb7e0
 
 
 
e1148db
c2eb7e0
 
 
 
e1148db
c2eb7e0
 
 
e1148db
c2eb7e0
 
 
 
 
e1148db
 
 
 
 
 
b630dd7
 
 
e1148db
c2eb7e0
 
e1148db
 
 
c2eb7e0
 
e1148db
 
c2eb7e0
 
e1148db
 
 
c2eb7e0
 
e1148db
c2eb7e0
 
e1148db
 
c2eb7e0
 
e1148db
c2eb7e0
e1148db
 
d3832e0
e1148db
 
 
c2eb7e0
 
f352eac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import cv2
import numpy as np
import matplotlib.pyplot as plt
import ultralytics
from ultralytics import YOLO
print(ultralytics.__version__)
from ultralytics.yolo.utils.ops import scale_image
model = YOLO('yolov8n-face.pt')
model_seg = YOLO('yolov8s-seg.pt')



def crop_passport_size(img_arr,size):
    if size==3545:
        passport_size = (310, 410)
    elif size==34:
        passport_size = (260, 346)
    else:
        passport_size = (170, 210)
    # Load the input image
    # original_image = cv2.imread(input_image_path)
    original_image = img_arr
    # Define the dimensions for the passport-size photo (35mm x 45mm)
    # passport_size = (310, 410)

    # Resize the image to the passport-size dimensions
    resized_image = cv2.resize(original_image, (passport_size[0], passport_size[1]))

    # Save the cropped passport-size image
#     w_output = add_border(output, 4, 4, 4, 4, (0,0,0))
#     w_output = add_border(w_output, 15, 15, 15, 15, (255,255,255))
#     cv2.imwrite(output_image_path, resized_image)
    return resized_image

def add_border(image, top, bottom, left, right, color):
    return cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)

def horizontal_merge(number,crop_img,size):
    if size==3545:
        white_image = np.ones((450, 350, 3), dtype=np.uint8) * 255
        img_per_row = 6
    elif size==34:
        white_image = np.ones((386, 300, 3), dtype=np.uint8) * 255
        img_per_row = 7
    else:
        white_image = np.ones((250, 210, 3), dtype=np.uint8) * 255
        img_per_row = 10
    # white_image = np.ones((450, 350, 3), dtype=np.uint8) * 255
    list_img = []
    # for i in range(5):
    for i in range(number):
        list_img.append(crop_img)
    for i in range(img_per_row-number):
        list_img.append(white_image)
    merge_img = cv2.hconcat(list_img)
    return merge_img

def merge_all(number,input_path,size):
    
    input_image_path = input_path  # Replace with the path to your input image
    # output_image_path = output_path  # Replace with the desired output path
    output=crop_passport_size(input_image_path,size)

    w_output = add_border(output, 4, 4, 4, 4, (0,0,0))
    w_output = add_border(w_output, 15, 15, 15, 15, (255,255,255))
    w_output = add_border(w_output, 1, 1, 1, 1, (0,0,0))

    if size==3545:
        img_per_row = 6
        bottom_part = np.ones((270, 2100, 3), dtype=np.uint8) * 255
    elif size==34:
        img_per_row = 7
        bottom_part = np.ones((268, 2100, 3), dtype=np.uint8) * 255
    else:
        img_per_row = 10
        bottom_part = np.ones((470, 2100, 3), dtype=np.uint8) * 255

    img_2 = []
    num_ = number
    if num_%img_per_row == 0:
        for i in range(int(num_/img_per_row)):
            img1 = horizontal_merge(img_per_row,w_output,size)
            img_2.append(img1)
    #         print('fill')
        for i in range(img_per_row-int(num_/img_per_row)):
            img1_1 = horizontal_merge(0,w_output,size)
            img_2.append(img1_1)
    #         print('blank')
    elif num_%img_per_row != 0:
        for i in range(int(num_//img_per_row)):
            img1 = horizontal_merge(img_per_row,w_output,size)
            img_2.append(img1)
    #         print('fill')
        img1 = horizontal_merge(num_%img_per_row,w_output,size)
        img_2.append(img1)
    #     print('some')
        for i in range(img_per_row-int(num_//img_per_row)-1):
            img1 = horizontal_merge(0,w_output,size)
            img_2.append(img1)
    #         print('blank')

    merge_img_final = cv2.vconcat(img_2)
    # print(merge_img_final.shape)
    # bottom_part = np.ones((270, 2100, 3), dtype=np.uint8) * 255
    merge_img_final = cv2.vconcat([merge_img_final,bottom_part])
    # print(merge_img_final.shape)
    merge_img_final = add_border(merge_img_final, 52, 32, 30, 30, (255,255,255))
    # print(merge_img_final.shape)
    # cv2.imwrite(output_path, merge_img_final)
    # print(merge_img_final.shape)
    return merge_img_final

def align_crop_image(img):
#     img = cv2.imread(img)
    img = cv2.copyMakeBorder(img, 50, 0, 0, 0, cv2.BORDER_CONSTANT, value=(255,255,255))
    results = model(img)
    if len(results[0].boxes.data)==1:
        b_box_up = int(results[0].boxes.data[0][0]),int(results[0].boxes.data[0][1])
        b_box_down = int(results[0].boxes.data[0][2]),int(results[0].boxes.data[0][3])
        left_eye=int(results[0].keypoints.data[0][0][0]),int(results[0].keypoints.data[0][0][1])
        right_eye=int(results[0].keypoints.data[0][1][0]),int(results[0].keypoints.data[0][1][1])
        nose=int(results[0].keypoints.data[0][2][0]),int(results[0].keypoints.data[0][2][1])
        left_lip=int(results[0].keypoints.data[0][3][0]),int(results[0].keypoints.data[0][3][1])
        right_lip=int(results[0].keypoints.data[0][4][0]),int(results[0].keypoints.data[0][4][1])
        left_eye_center = left_eye
        left_eye_x = left_eye_center[0] 
        left_eye_y = left_eye_center[1]

        right_eye_center = right_eye
        right_eye_x = right_eye_center[0]
        right_eye_y = right_eye_center[1]
        
        if left_eye_y > right_eye_y:
            A = (right_eye_x, left_eye_y)
            # Integer -1 indicates that the image will rotate in the clockwise direction
            direction = -1 
        else:
            A = (left_eye_x, right_eye_y)
            # Integer 1 indicates that image will rotate in the counter clockwise  
            # direction
            direction = 1 
        delta_x = right_eye_x - left_eye_x
        delta_y = right_eye_y - left_eye_y
        angle=np.arctan(delta_y/delta_x)
        angle = (angle * 180) / np.pi
        h, w = img.shape[:2]
        # Calculating a center point of the image
        # Integer division "//"" ensures that we receive whole numbers
        center = (w // 2, h // 2)
        # Defining a matrix M and calling
        # cv2.getRotationMatrix2D method
        M = cv2.getRotationMatrix2D(center, (angle), 1.0)
        # Applying the rotation to our image using the
        # cv2.warpAffine method
        rotated = cv2.warpAffine(img, M, (w, h))
        results = model(rotated)
        b_box_up = int(results[0].boxes.data[0][0]),int(results[0].boxes.data[0][1])
        b_box_down = int(results[0].boxes.data[0][2]),int(results[0].boxes.data[0][3])
        box_height = b_box_down[0]-b_box_up[0]
        box_width = b_box_down[1]-b_box_up[1]
        left_eye=int(results[0].keypoints.data[0][0][0]),int(results[0].keypoints.data[0][0][1])
        right_eye=int(results[0].keypoints.data[0][1][0]),int(results[0].keypoints.data[0][1][1])
        nose=int(results[0].keypoints.data[0][2][0]),int(results[0].keypoints.data[0][2][1])
        left_lip=int(results[0].keypoints.data[0][3][0]),int(results[0].keypoints.data[0][3][1])
        right_lip=int(results[0].keypoints.data[0][4][0]),int(results[0].keypoints.data[0][4][1])
        left_eye_center = left_eye
        left_eye_x = left_eye_center[0] 
        left_eye_y = left_eye_center[1]

        right_eye_center = right_eye
        right_eye_x = right_eye_center[0]
        right_eye_y = right_eye_center[1]

        up_crop = b_box_up[0]-int(box_height/2),b_box_up[1]-int(box_width/3)
        down_crop = b_box_down[0]+int(box_height/2),right_lip[1]+box_width
        final_image = rotated[up_crop[1]:down_crop[1],up_crop[0]:down_crop[0]]
        resized_image =cv2.resize(final_image, (210, 297))
        return resized_image
    else:
        return None
    
    
def predict_on_image(img, conf):
    result = model_seg(img, conf=conf)[0]

    # detection
    # result.boxes.xyxy   # box with xyxy format, (N, 4)
    cls = result.boxes.cls.cpu().numpy()    # cls, (N, 1)
    probs = result.boxes.conf.cpu().numpy()  # confidence score, (N, 1)
    boxes = result.boxes.xyxy.cpu().numpy()   # box with xyxy format, (N, 4)

    # segmentation
    if result.masks:
        masks = result.masks.data.cpu().numpy()     # masks, (N, H, W)
        masks = np.moveaxis(masks, 0, -1) # masks, (H, W, N)
        print(masks.shape)
        # rescale masks to original image
        masks = scale_image(masks, result.masks.orig_shape)
        masks = np.moveaxis(masks, -1, 0) # masks, (N, H, W)

        return boxes, masks, cls, probs
    else:
        return None


def overlay(image, mask, color, alpha, resize=None):
    """Combines image and its segmentation mask into a single image.
    https://www.kaggle.com/code/purplejester/showing-samples-with-segmentation-mask-overlay

    Params:
        image: Training image. np.ndarray,
        mask: Segmentation mask. np.ndarray,
        color: Color for segmentation mask rendering.  tuple[int, int, int] = (255, 0, 0)
        alpha: Segmentation mask's transparency. float = 0.5,
        resize: If provided, both image and its mask are resized before blending them together.
        tuple[int, int] = (1024, 1024))

    Returns:
        image_combined: The combined image. np.ndarray

    """
    for i in range(len(mask)):
        for j in range(len(mask[i])):
    #         print(masks[0][i][j])
            mask[i][j] = abs(mask[i][j] - 1)
    color = color[::-1]
    colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
    colored_mask = np.moveaxis(colored_mask, 0, -1)
    masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
    image_overlay = masked.filled()
    if resize is not None:
        image = cv2.resize(image.transpose(1, 2, 0), resize)
        image_overlay = cv2.resize(image_overlay.transpose(1, 2, 0), resize)

    image_combined = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)

    return image_combined

def add_name_dob(img,name,dob):
    img = cv2.resize(img,(420,594))
    img = cv2.rectangle(img,(0,520),(420,594),(255,255,255),-1)
    dob = 'D.O.B: '+dob
    font = 1#cv2.FONT_HERSHEY_SIMPLEX
    font_scale = 2
    font_thickness = 2

    # Get the size of the text
    text_size = cv2.getTextSize(name, font, font_scale, font_thickness)[0]
    dob_size = cv2.getTextSize(dob, font, font_scale, font_thickness)[0]

    # Calculate the position to center the text
    text_x = (img.shape[1] - text_size[0]) // 2
    text_y = (img.shape[0] + text_size[1]) // 2
    dob_x = (img.shape[1] - dob_size[0]) // 2
    dob_y = (img.shape[0] + dob_size[1]) // 2

    # Put the text on the image
    cv2.putText(img, name, (text_x, 547), font, font_scale, (0, 0, 0), font_thickness)
    cv2.putText(img, dob, (dob_x, 583), font, font_scale, (0, 0, 0), font_thickness)

    return img