Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the model
|
5 |
+
model_name = "maiurilorenzo/misogyny-detection-it"
|
6 |
+
classifier = pipeline("text-classification", model=model_name)
|
7 |
+
|
8 |
+
# Define the prediction function
|
9 |
+
def detect_misogyny(text):
|
10 |
+
result = classifier(text)
|
11 |
+
label = result[0]["label"]
|
12 |
+
score = result[0]["score"]
|
13 |
+
label_readable = "Misogynistic" if label == "LABEL_1" else "Non-Misogynistic"
|
14 |
+
return f"Label: {label_readable} (Confidence: {score:.2f})"
|
15 |
+
|
16 |
+
# Create the Gradio interface
|
17 |
+
demo = gr.Interface(
|
18 |
+
fn=detect_misogyny,
|
19 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter Italian text here..."),
|
20 |
+
outputs="text",
|
21 |
+
title="Misogyny Detection in Italian",
|
22 |
+
description="This demo uses a fine-tuned BERT model to detect misogynistic content in Italian text. Enter a phrase or sentence, and the model will classify it as 'Misogynistic' or 'Non-Misogynistic' along with a confidence score.",
|
23 |
+
article="""
|
24 |
+
### About the Model
|
25 |
+
This model is fine-tuned on the AMI (Automatic Misogyny Identification) dataset for binary classification of misogynistic content in Italian.
|
26 |
+
- **Labels:**
|
27 |
+
- `1`: Misogynistic
|
28 |
+
- `0`: Non-Misogynistic
|
29 |
+
- **Source Model:** [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased)
|
30 |
+
"""
|
31 |
+
)
|
32 |
+
|
33 |
+
demo.launch()
|