import gradio as gr from transformers import pipeline # Load the model model_name = "maiurilorenzo/misogyny-detection-it" classifier = pipeline("text-classification", model=model_name) # Define the prediction function def detect_misogyny(text): result = classifier(text) label = result[0]["label"] score = result[0]["score"] label_readable = "Misogynistic" if label == "LABEL_1" else "Non-Misogynistic" return f"Label: {label_readable} (Confidence: {score:.2f})" # Create the Gradio interface demo = gr.Interface( fn=detect_misogyny, inputs=gr.Textbox(lines=3, placeholder="Enter Italian text here..."), outputs="text", title="Misogyny Detection in Italian", description="This demo uses a fine-tuned BERT model to detect misogynistic content in Italian text. Enter a phrase or sentence, and the model will classify it as 'Misogynistic' or 'Non-Misogynistic' along with a confidence score.", article=""" ### About the Model This model is fine-tuned on the AMI (Automatic Misogyny Identification) dataset for binary classification of misogynistic content in Italian. - **Labels:** - `1`: Misogynistic - `0`: Non-Misogynistic - **Source Model:** [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) """ ) demo.launch()